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Abstract.

Numerical simulations of the behavior of machine tools aseally based on a finite element (FE)
discretization of their mechanical structure. In orderaptare all necessary details FE models are in
general very large and sparse. Hence the computation ofttutegion takes an unacceptable long time
and requires much memory space. To calculate the resubsgonable time typically modal reduction
is used to obtain a model of lower order. This method has thaddiantage that the reduced system
only contains information of the modes chosen to generatedtiuced system. Moreover, the choice
of the essential modes is usually based on a heuristic antbthe fully automated. Therefore, there
is a need for alternate reduction methods which can be fuligraated.

In the last years new methods to reduce large and sparse thalaystems were presented. The two
most important ones are balanced truncation approximaiBiA) and Krylov subspace methods.
Here the main focus is on the reduction of the special FE systeith Krylov subspace methods. The
main goal of this work is to discuss whether these methodsuitable for this type of application, not
on the derivation of a new reduction technique. Several &rgubspace methods for first or second
order systems based on the Interpolation-Rational-Kefltyorithm (IRKA) were implemented. The
reduced systems are compared with reduced systems oblgimeddal reduction and BTA.

1 Introduction

The simulation of a machine tool is based on two major parssruectural model of the machine tool representing
its behavior and reaction on certain control inputs and tmgrol loop generating those inputs. Figure 1 shows the
entire set up of the simulation for the example of a controplto control the torque of an axis motor.
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Figure 1: Control loop and embedded mechanical structure.

To describe the behavior and the reaction of the mechariieadtsre on control inputs a system of FE semi-
discritized partial differential equations (PDE) is used.
After linearization one obtains a system of ordinary difetial equations (ODE) of second order:

M(t) + DX(t) + Kx(t) =  Bu(t)
y{t)= CIx(t)+Chx(t)

whereM,D,K € R™", B R™P, CJ,C] € R™", x(t) € R", u(t) € RP, y(t) € R™. In the special case discussed
here the damping matri® is chosen as

1)

D=a-M+B-K,

thatis,D is proportional to the mass mati# and the stiffness matrik, wherea andf are real parameters which
are chosen by the experience of the design engineer andwede 0 and 0.1. This kind of proportional damping



is called Rayleigh damping. The system matrices are spafrbégh order and non-symmetric. Further the system
may be unstable. All of this accounts for unacceptable cdatjmnal and resource demands in simulation and
control of these models. In order to reduce these demandaséptable computational times, usually model order
reduction techniques are employed which generate a reduded model that captures the essential dynamics of
the system and preserves its important properties.

Model order methods are methods to find a second order systeeduced dimensiok < n

MX(t) + DR(t) + KR(t) =  Bu(t)
)= CUR(t)+CpR(),

whereM, D, K € Rk Be RWP, C] Cl € R™K g(t) € R, u(t) € RP, y(t) € R™, which approximates the original
system in some sense.
Moreover, as any second order model can be transformed firt arder system called state space form

b Wl J] - [ o] B+ 8]
—_—— — e S

)

E 2(t) A 2(t) G
3)

_ eT T X ’

y(t) [ pCTCv} [X(t)]

Z(t)

whereE, A € R?™21 G € R?™P, CT ¢ R™2", z(t) € R?", u(t) € RP, y(t) € R™P, andl € R™" s the identity
matrix. By the transformation process the dimension of §stesn doubles. The corresponding reduced order
system is of the form

E2(t) = Az(t)+Gu(t)
yt) = Cra),
whereE, A € Rk, G e RAP, CT e R™K, 2(t) e RK, u(t) € RP, yi(t) € R™P,
In engineering the modal reduction [2] is most common. Ifideyears new reduction methods to reduce large and
sparse dynamical systems were presented. The two most $amethods are balanced truncation approximations

(BTA) and Krylov subspace methods. The efficient applicattbBTA to the specific problem considered here is
discussed by Benner and Saak in another contribution.

(4)

Here we consider the reduction of large structural meclad/iE models by Krylov subspace methods.

2 Krylov subspace methods
A Krylov subspace is defined by

t%/I’(P? q) = Spar{q7 an qua Tty Prilq} (5)

whereP € R™" andg € R". qgis called the starting vector.

the reduced first order systems. For our purposes, a Krylospgace method generates a Petrov-Galerkin projection
M which can be used to project the system (1) (resp., (3)) osistem (2) (resp., (4)) of dimensién« n. For

that Krylov subspace methods generate matiNeesR?™* andw e R?™k with WTV = I such that the reduced
first order system (4) is constructed by applying the Pe@alerkin projectioril = VW' to (3) such that

E=W'EV, A=W'A/, G=W'G, and C'=cC'"V. (6)
Similarly, the reduced second order system (2) is congtdlioy applying a Petrov-Galerkin projection to (1) such
that

M=wW'™MV, D=WTDv, K=W'Kvy, B=w'8, CJ=CJV, and C]=C}V, (7)

whereV € R™K andW e R™K with WTV = I.

In both cases, the columns ¥fandW span certain Krylov subspaces. As the vectors in the Krybmusnce
g,Pq,P?q,... tend to become almost numerically linearly dependent everafmoderate dimension &, the
columns ofV andW are chosen such that they represent a (hnumerically) betsés bf the corresponding Krylov
subspace (e.g., they result from orthogonalizing a Krylegugnce or from bi-orthogonalizing two Krylov se-
quences). Usually, this is achieved by employing the Lagscnothe Arnoldi algorithm, see Section 3 for more
details.

A block Krylov subspace is defined by
t%/I’(F)a Q) = Spar{Qa PQa P2Q7 ) PrilQ} = Spar{VOavla o 7VI'71}’ (8)



whereP € R™" and the columns of € R™ are the linearly independent. Such a block Krylov subspaitie w
¢ starting vectors (assembled @) can be considered as a unionfokrylov subspaces defined for each starting
vector. For more details on Krylov subspace methods seg[£2}.

2.1 First order systems

The transfer function of a first order system (3) is the limeapping of the Laplace transformation of the input to
the output
H(s) =CT(sE—A)"1G.

After expansion in a Laurent expansion series around amsimapointsy one obtains the momenits(sy), j =
0, .., of the transfer function

H(s)

ihj (20)(s- %)’
=

where hj(ss) = CT[(A—sE)E]'(A—sE)1G.
Consider the block Krylov subspace (8) for
P=(A—sE) 'E and Q= (A—sE)'G. 9)

Assume that a (block) orthogonal basis for this block Krydabspace is generated using a suitable method. Choose
the column vectors of =W as the firsk vectors of that basis and apply the congruence transfooméa) (with

V,W =V andVTV =1). Then the transfer function of the resulting reduced systeatches at least the firgt/ p|
moments of the transfer function of the original system THat is, at least the firgk/p| momentsﬁj (s0), of the
transfer functiort (s) of the reduced system (3) equal the first moménts), of the transfer functiot (s) of

the original system (4) at the expansion paint

hj(s0) = hj(s0), i =0,1,--,k/pJ - 1.
WhenV is determined from the block Krylov subspace generated by
P=(A—sE) E andQ= (A—sE) 1G,
while W is determined from the block Krylov subspace generated by
P=(A-sE) TET andQ=(A—sE) 'C,

such thaWWTV =1, then the transfer function of the system obtained by apglyfie congruence transformation
(6) with V andW matches at least the firsk/p+ k/m| moments of the transfer function of the original system

(1].

An alternative is to use more than one expansion point, tmeskods are called Multi-Point-Rational-Interpolation
methods [5]. Assume thatexpansion points;, i = 1,2,---,i are to be considered. As before, at legsy p|
moments are to be matched per expansion mirtetk; € N such thatz}:lki = k. Now, these methods require
that at least the firstk;/p] momentsﬁj (s) of the transfer functiord (s) of the reduced system equal the first
momentshj(s) of the transfer function of the original systet(s) at the expansion poings, i = 1,2, --- ,i:

hj(S) Zﬁj(S), j=0,1,---, |_k|/pJ -1 i=12,-- ’iA
The column vectors of the matrix are determined from thieblock Krylov subspaces generated by
P=(A-sE)E andQ=(A-sE)"IG, i=1,2,....i.

From each of these subspades;olumn vectors are used to genendte
Similarly, the column vectors of matri¥/ are determined from theblock Krylov subspaces generated by

P=(A—sE) TE"T andQ=(A—sE) 'C.

In [6] the choice of expansion poings i = 1,....i is discussed. Starting from an initial set of expansion {sEra
reduced order system is determined. Then a new set of exprgpints are assigned By=—A;, i=1,...,iwhere
Ai are the eigenvalues of the matrix pertei- A A with E, A as in (4) ordered such thgy| > |Az]| > ... > |Aq|.
With this new set of expansion points, typically a reductigth better approximation abilities is obtained.



2.2 Second order systems

The bottleneck of the computation of reduced systems bydtrglbspace methods is to solve linar systems of
the form (9). By the transformation of a second order systama first order system the dimension of the system
doubles. Therefore the reduction of the second order systayrbe more effective if the dimension of the original
model is very large. The transfer function of a second orgstesn is given by the Laplace transformation of (1):

H(s) = (Cp+5G) (M +sD+K)!B.

After expansion in a Laurent expansion series around amsimapointsy one obtains the momenits(sy), j =
0, .., of the transfer function

HE = 3 hi(so)s- %)
s J;)Jsosso

where hj(s)) = (Cp+50C)"[(—5M — 5D — K) M|} (—5M — 5B — K) !B,
with D =25sM +D, K = %M +sD+K andCNZp = (Cp+%Cy). Here we consider the special case of systems
with Rayleigh damping. In [7] it is shown, that using

P=—($M+sD+K) M andQ=—($M +sD+K) !B

in (8) to generaté column vectors for matri¥/ the transfer function of the system reduced by applying the
congruence transformation (7) with, W =V andVTV = I, matches at least the firsk/p| moments of the
transfer function of the original system [7].

In caseV #W, butWTV =1 is chosenV is determined from the block Krylov subspace generated by

P=—(M+D+K) "M" and Q= — (M + 5D +K) T (Cp+5oC).

The transfer function of the system obtained by applyingthegruence transformation (7) withandwW matches
at least the firstk/p+ k/m| moments of the transfer function of the original system [7].

When more than one expansion point is used the column veaftoratrixVV are determined from the block Krylov
subspaces

P=—(¥M+sD+K)™M andQ= — (M +sD+K) !B,
while the column vectors of matri¥/ are determined from the block Krylov subspaces

P=—(M+sD+K) 'M" andQ=—(§M+sD+K) T (Cp+5sCy).

3 Implementation

To reduce first and second order systems methods based artéhgolation-Rational-Krylov-Algorithm (IRKA)
[6] were implemented.

3.1 First order systems

To reduce the state space systems the following Krylov satesmethods were used:

1. Padé-via-Arnoldi method (PVA) by Odabasioglu and CHI.
2. Padé-via-Lanczos method (PVL) by Feldmann and Freund [8
3. Rational-Arnoldi method (RA) by Grimme [5].
4. Rational-Lanczos method (RL) by Gallivan, Grimme and 2od9].
The first two methods use only one expansion point, whileaketivo methods deal with more than one expansion
point. In the following algorithms pseudo code of the impéerred methods are given.
» The code of methods with one expansion point is given asitlgo 1.
» The code of the Arnoldi algorithm is given as Algorithm 2.
» The code of the Lanczos algorithm is given as Algorithm 3.
» The code for the methods with more than one expansion pogitvéen as Algorithm 4.

The methods are implemented to handle the sparse strudttire system matrices. To handle systems with one
input but more than one output the block forms of the Krylogthods were implemented.



Algorithm 1 Padé-via-Arnoldi method / Padé-via-Lanczos method

Input: system matrice€, A, G, C; expansion poins; reduced order;
deflation tolerancedefitol
Output: reduced system matricesA,G,C
1: function [E,A,G,C] = PVA(E,A,G,C, s r,defltol)
[[E,A,G,C]=PVvL(E,A,G,C,s,r,defltol) ]

2V=[]W=[]

3 [L,U]=Ilu(A—-SsE)

4: for i=1tor do

5.V =Krylov(L,U,E,G,V,(W),defltol,i)

6 W =Krylov(UT,LT,ET,CT (W),V,defltol,i)
7: end for

8: if #columngV) = #columngW) then

9: makeV andW of the same dimension

10: end if

. [E,A,G,C] = transformE, A, G, C,V, W)
. if the reduced system is unstable reduce dimensiohafidW until the system is stable.

el
N -

Some remarks on Algorithm 1:

In line 3 theLU decompasition of the matri¢A — sE) is computed.

In line 5 and 6 the matriceg andW are computed by the Arnoldi or the Lanczos algorithm. WhenAmoldi
algorithm is used the matriceé and W are orthonormal, i.eVTV =1 andWTW = |. When the Lanczos
Algorithm is used the matriceg andW are biorthonormal, i.eW TV = A, whereA is a diagonal matrix.

In line 9 the dimensions of andW were adapted: The dimensions of the matrices may be not.egalcause
are deflated vectors or an unequal number of input and ougmbks( p # m). There are two possibilities to adapt
the dimension of andW: either reduce the number of columns of the matrix with higlimension by truncating
the last columns, or use the Krylov algorithm to generatetiidl columns for the matrix at lower dimension.

In line 11 the congruence transformation (6) is computed.

In line 12 the dimension of the matrice¥sandW is decreased by truncating the last columns, until the rediuc
system is stable.

Algorithm 2 Block Arnoldi method

Input: matriced.,U,E,G,V,W; deflation tolerancéefltol; indexi
Output: transformation matri¥/

1: function [V] = Block_Arnoldi(L,U,E,G,V,defltol,i)

2. if (i==1) then

3 R=U\L\G

4: else

5. r=#columngV)

6: s=r—#columngG)+1
7. V=[Vis, o, Vi)

8 R=U\L\(E-V)

9: end if

10: for j =1 to #columngR) do
11:  for k= 1to #columngV) do
12: h=(R.j,Vik)2

13: R*j:R*j—h-v*k

14:  end for

15:  h=,/(R.j,Rj)2

16: if (h> defitol) then

17: V= 1R,

18: V=[VV]

19: else
20: Deflation
21:  endif

22: end for




Algorithm 3 Block Lanczos method

Input: matriced.,U,E,G,V,W; deflation tolerancéefltol; indexi
Output: transformation matrix/

1: function [V] = Block_Lanczod(,U,E,G,V,W,defltol,i)

2. if (i==1) then

3 R=U\L\G

4: else

5. r=#columngV)

6: s=r—#columngG)+1
7. V=[Vis, o, Vi

8 R=U\L\(E-V)

9: end if

10: if i #1 then

11:  for j=1to #columngR) do .
12: for k= (#columngV) — 2) to #columngV) do
13: h= (R*j,W*k)z

14: R*j:R*j—h~\7*k
15: end for

16: h= (R*j,W*j)z

17: if (h> defltol) then
18: V = 1R,

19: V=[VV]

20: else

21 Deflation

22: end if

23 end for

24: end if

Some remarks on Algorithm 2 and 3:

In line 3 the solution of A — sE)x = G is computed via forward and backward substitution usingthelecom-
position of the matriXA — sE).

Inline 5 and 6 the vectors to generate the block matrix areatietl and in line 7 the block matrix is generated.
In line 8 the solution of A —sE)x = (E - V) is computed via forward and backward substitution with ithe
decomposition of the matrigA — sE).

In line 20 respective 21 vectoR,j with h < defltol are deflated, they are not used to generate the matrix V.

Algorithm 4 Rational-Arnoldi method / Rational-Lanczos method

Input: system matricesk,A,G,C; expansion pointss,, k= 1,...,K; tolerancetol ; vector with number of
expansions for everys; deflation toleranceefitol
Output: reduced system matricesA,G,C
1: function [E,A,G,C] = RA(E,A,G,C,s,J,defltol)
[ [E,A,G,C]=RL(E,A,G,C,s,J,defltol) ]

2: while relative change in ong > tol do

3 V=[] W=][]

4. for k=1toK do

5: [L,U] =Ilu(A—-E)

6: for i =1toJk do

7: V =Krylov(L,U,E,G,,V,(W),defltol,i)
8: W = Krylov(UT,LT ET,CT, W, (V),defltol, i)
9: end for

10: if (#columngV) # #columngW)) then
11: makeV andW of the same dimension
12: end if

13:  end for

14: E, =WTEV, A, =WTAV

15:  assignse — —Ak(Er,Ar) fork=1,...,K

16: end while

17: [E,A,G,C] =transformg,A,G,C,V, W)

18: if the reduced system is unstable reduce dimension afdW




Some remarks on Algorithm 4

s, k=1,...,K are the expansion point3.is a column vectors with the number of expansions computerzn-
sion points.

In line 5 theLU decomposition of the matrif®d — stE) is computed.

In line 7 and 8 the matriceg andW are computed by the Arnoldi or the Lanczos algorithm. WhenAmoldi
algorithm is used the matricd&andW are orthonormal, i.eVTV = | andWTW = |. When the Lanczos algo-
rithm is used the matricég andW are biorthonormal, i.eWT V = A, whereA is a diagonal matrix.

In line 11 the dimensions &f andW were made equal, see remarks on Algorithm 1 for details.

In line 14 the congruence transformation (6) EbandA is computed.

In line 15 new expansion point are chosen from the eigenvalues(&;,A,) in a relevant frequency interval
computed by a generalized eigenproblem.

In line 17 the congruence transformation (6) is computed.

In step 18 the dimension of the matricésandW is reduced by truncating the last columns, until the reduced
system is stable.

3.2 Second order systems

To reduce the second order system the following Krylov sabspnethods were used:

1. Rational Arnoldi for systems without damping matrix (R2o) [5]

2. Rational Lanczos for systems without damping matrix (&b) [9]

3. Rational Arnoldi for systems with proportional dampify_PD) by Gugercin [7]

4. Rational Lanczos for systems with proportional dampRig_(PD)
The methods have more than one expansion point. The first thads are modified versions of the Rational-
Arnoldi and the Rational-Lanczos method for second ordstesys without damping matrix. The last two methods

exploit the special structure of the proportional dampiragnir. The pseudo code for the first two methods is given
as Algorithm 5 and for the last two methods as Algorithm 6.

Algorithm 5 Rational-Arnoldi method / Rational-Lanczos method fors®torder systems

Input: system matricesM,K,B,Cy,Cy; expansion pointss,, k=1,...,K; toleranceol ; vector with number of
expansions for everys; deflation toleranceefitol
Output: reduced system matricés, K,B,Cy, Cy
1: function M,K,B,Cp,C,] = RA_20M,K,B,Cp,Cs,J,defltol)
[[M,K,B,Cp,C\] =RL_20(M,K,B,Cp,Cs,J,defltol) ]

2: while relative change in ong > tol do

3 V=[|W=][]

4. for k=1toK do

5: [L,U]:Iu(—sﬁM—K)

6: C = Cp+ S(Cv

7 for i =1toJk do

8 V =Krylov(L,U,M,B,,V,(W),defltol,i)
9: W = Krylov(UT,LT,MT,CT W, (V),defltol, i)
10: end for

11: if (#columngV) # #columngW)) then
12: makeV andW of the same dimension
13: end if

14:  end for

15 M, =WTMV, K, = WTKV

16:  assignse «— —A(M,Ky) fork=1,...,K

17: end while

18: [M,K,B,Cy,C,] = transform,K,B,Cp,Cy,V, W)

19: if the reduced system is unstable reduce dimension afdW

Some remarks on Algorithm 5:

S, k=1,...,K are the expansion pointd.is a column vectors with the number of expansions computegjzn-
sion points.

In line 5 theLU decomposition of the matri*(ﬁM + K) is computed.

In line 8 and 9 the matriceg andW are computed by the Arnoldi or the Lanczos algorithm. WhenAmoldi
algorithm is used the matricd&andW are orthonormal, i.eVTV = | andWTW = |. When the Lanczos algo-
rithm is used the matriceg andW are biorthonormal, i.eWT V = A, whereA is a diagonal matrix.

In line 12 the dimensions &f andW were made equal, see remarks on Algorithm 1 for details.

In line 15 the congruence transformation (7) MbrandK is computed.



In line 16 new expansion point; are chosen from the eigenvalues(d,,K,) in a relevant frequency interval
computed by a generalized eigenproblem.

In line 18 the congruence transformation (7) is computed.

In step 19 the dimension of the matricésandW is reduced by truncating the last columns, until the reduced
system is stable.

Algorithm 6 Rational-Arnoldi method / Rational-Lanczos method foraet order systems with proportional
damping
Input: system matriced1,D,K,B,Cy, Cy; expansion pointss,, k=1,...,K; toleranceol ; vector with numbers
of expansiong for everys,; deflation toleranceefitol
Output: reduced system matrices of second ofdeD,K,B,Cp,Cy
1: function M, D,K,B,Cp,C\] = RA_PDM,D,K,B,Cp,Cy,s,J,r,defltol)
[[M,D,K,B,Cp,C\] =RL_PDM,D,K,B,Cp,Cy,s,J,r,defltol) ]

2: while relative change in ong > tol do

3 V=[|W=][]

4. for k=1toK do

5: [L,U] = —lu(s$M + D +K)

6: for i =1toJk do

7 C=Cp+sCy

8 V =Krylov(L,U,M,B,V,(W),defltol,i)
9: W = Krylov(UT,LT,MT,CT, W, (V),defltol, i)
10: end for

11: if (#columngV) # #columngW)) then
12: makeV andW of the same dimension
13: end if

14:  end for

5. M, =WTMV, D, =WTDV, K, = WTKV

16:  assignsg «— —Ax(M,Dr,Ky) fork=1,... K

17: end while

18: [M,D,K,B,Cp,C,]=transformM,D,K,B,Cp,Cy,V,W)

19: if the reduced system is unstable reduce dimension afdW

Some remarks on Algorithm 6:

s, k=1,...,K are the expansion pointd.is a column vector with the number of expansions computegre
sion points.

In line 5 theLU decomposition of the matrix (M + D + K ) is computed.

In line 8 and 9 the matriceg andW are computed successively by the Arnoldi or the Lanczosrittgon. When
the Arnoldi algorithm is used the matricésandW are orthonormal, i.eVTV =1 andWT W = |. When the
Lanczos algorithm is used the matrid¢ésndW are biorthonormal, i.eWT V = A, whereA is a diagonal matrix.
In line 12 the dimensions &f andW were made equal, see remarks on Algorithm 1 for details.

In line 15 the congruence transformation (7) kér D andK is computed.

In line 16 new expansion poings are chosen from the eigenvaluegbf,,D;,K;) in a relevant frequency interval
computed by a generalized eigenproblem.

In step 19 the dimension of the matricésandW is reduced by truncating the last columns, until the reduced
system is stable.

4 Numerical Results

To test the approximation results of the different methosisigle feed drive with ball screw drive and linear guide
was designed using the CAD environmemstRAN®. The structure of that part of the machine tool is shown in
Figure 2. The structure is embedded in a control loop. Astitipaitorque at the motor spindle was defined. The
angle and the velocity of the motor spindle and the positimhthe velocity of the slide were defined as outputs.

The test model is of order= 738, i.e. it has 738 degrees of freedom (DOF’s), it has onetip= 1) and four
outputs(m= 4). The parameters for the proportional damping matrix wereseh asx = 0.02 andf = a/100.

The algorithms were implemented in MATLABRersion 7.1 (R14). The computations were performed on a AMD
Athlon(tm) 64 X2 Dual Core Processor 4400+ and 2 GB RAM.

All results reported here were obtained for first order systef initial reduced dimension 20 and for second order
systems of initial reduced dimension 10. Besides the Krglolvspace methods, a second order modal reduced
system generated by NASTRAN of dimension 10 (modal_20) dirdtaorder BTA reduced model of dimension

IMATLAB is a trademark of The MathWorks, Inc.
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Figure 2: FE structure of the machine part: top: geometry of the testehyd®ottom: without the geometry.

20 (BTA) were used to compare the approximation results obua reduction methods. The BTA reduced model
was generated by Benner and Saak (see their contributior as efficient application of BTA [3] to the specific
problem considered here. The method is applied to a secalet system resulting in a first order reduced one
(unlike the other second order methods).

In Table 1 the input parameters and the computation timesduoae the first order system using different Krylov
subspace methods are given. Table 2 gives the same infomzegtiTable 1, but for the corresponding second order
system. In order to compare the different methods the ajipadion of the original transfer function and the time

expansion expansions| tolerance| timeto
points per point tol reduce the
Sors k or k; system [s]
PVA 0 20 10° 12.2
PVL 0 20 10° 11.3
RA || 2m(0,+125,4+250)" 2 10°° 20.1
RL || 2m(0,+£125,+25G)" 2 10°° 19.6

Table 1: Chosen initial expansion points, expansions per poingramicetol and computation time to reduce the first
order systems.

expansion expansions| tolerance| time to
points per point tol reduce the
S ki system [s]
RA 2m(0,£125,4+250)7 1 10°° 8.8
RL 2m(0,+125,+250)7 1 10°° 8.6
RA_PD || 2m(0,+125,+25G)" 1 10°° 8.1
RL_PD || 2m(0,+£125,+250G)" 1 10°° 7.9

Table 2: Chosen initial expansion points, expansion per pointramleetol and computation time to reduce the second
order systems.

response by the reduced systems were analyzed.
To assess the quality of the reduced systems the followingsewere used:

» The absolute time response error from the input tojttre output of a reduced system was computed by
Eaps(t) = lyj(t) —¥j(t)].

Hereg apg(t) is the absolute erroy;(t) is the j-th output of the original system aryl(f) is the j-th output
of the reduced system at time t.

» The relative error of the transfer function from tlieh input to thek-th output of a reduced system was
computed by

. |Hk’j(2nwi)—l:|k,j(2nwi)|
(@) =T @l



Here g, el (w) is the relative errorHy ; and Hk’j are the transfer functions from theth input to thek-th
output of the original system respective of the reducedesyst

The worst approximation results were observed for the hguput behavior from the input to the second output.
Only this information is given in the following figures.

4.1 Approximation of the transfer function

In Figure 3 the transfer functions of the original and theuaat systems are given, while in Figure 4 the relative
approximation errors of the transfer functions are giveerethe relevant frequency interval is from from 0 to
1000 Hz because this frequency range is most important tolatenthe behavior of mechanical structures under
consideration. In order to compare the different methodgirfst order systems the second order modal reduced
system (modal_20) was transformed into a first order sysfatmeension 20 (modal_10).

Input: 1 to Output: 2 Input: 1 to Output: 2
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Figure 3: The second output transfer function of the original and #diced systemdeft: Transfer functions of the
original first order system and the reduced systems obtaiitbdnethods to reduce first order systemight: Transfer
functions of the original second order system and the retisgstems obtained with methods to reduce second order
systems.

Input: 1 to Output: 2 Input: 1 to Output: 2
10 T T T 10 T T T

10

10°F

2 2
T T
w§ - w%
10747,
" +++ modal_1o +++ modal_20
10 PVA b ! * RA 20
O PVL 1072 X RL20 |
* RA RA_PD
A x RL o RL_PD
10° L i i i i i i T T 107 I I I I I I I T T
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Frequency [Hz] Frequency [Hz]

Figure 4: Relative errore, r|(w) of the reduced systemgeft: Approximation errors of the reduced systems obtained
with methods to reduce first order systenmight: Approximation errors of the reduced systems obtained witthads
to reduce second order systems.

The results for the first order system are displayed on thélefach of the two figures. The approximation results
obtained with the PVA and the PVL method get worse for fregigsifar away from the expansion point 0. The
maximum relative error of these methods is greater than ® Kifylov subspace methods Rational-Arnoldi and
Rational-Lanczos yield reduced systems with an approximatror similar to that of the modal reduced systems
of order 20 (modal_20) with a maximum relative error of 20 The reduction with Rational Krylov methods
which use more than on expansion point yields better appratons in a wider range of frequencies.

The results for the second order system are displayed ongthteim each of the two figures. All Krylov subspace
methods to reduce second order systems considered herateordRKrylov methods, that is, they use more than
one expansion point. They yield good approximations in eewihge of frequencies. All four methods imple-
mented here have almost the same approximation errors.

For the entire frequency range considered here the redecedd order systems have a better relative error than



the reduced first order systems.

4.2 Approximation of the time response

To analyze the approximation abilities of the response Wieh&n time the reduced models were embedded into
a control loop designed with MATLAB/SIMULINK. The input sigl was an impulse from 0to 1 in=0 s.

In Figure 5 the time response of the reduced systems embéaaldeel control loop are shown. To compute the
simulation in a reasonable time the time responses of thecestisystems were compared with the time response
of a modal reduced system of order 472 which includes all mofiéhe original system. MATLAB/SIMULINK
deals only with first order systems, so the second order eztiagstems had to be transformed into first order
systems by (3).

In Figure 6 the absolute errors of the time responses aftbedding the reduced systems into the control loop
are displayed. The Krylov subspace methods to reduce fist afystems yield good approximations of the time
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Figure 5: Time responses of the reduced systems, here the inputtdagpavior from the input to the second output is
displayed:left: Time response of the modal reduced system with dimensiorad@2he reduced systems obtained with
methods to reduce first order systemight: Time response of the modal reduced system with dimensiorad@2he
reduced systems obtained with methods to reduce secondsystems.
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Figure 6: Absolute errorg ap¢(t) of the reduced systemseft: Approximation errors of the reduced systems obtained
with methods to reduce first order systenmight: Approximation errors of the reduced systems obtained witthads
to reduce second order systems.

response. The maximal absolute errori&@° in contrast to 310~* after modal reduction of the original system
to a system of order 20. The Krylov subspace methods to reshamnd order systems yield better approximations
of the time response of the original system compared to thelairend via BTA reduced systems of order 20. The
maximal absolute error is-20~° in contrastto 310 % and 9 10~° obtained with the modal resp. the BTA reduced
model of order 20.



5 Conclusions

Several Krylov methods to reduce first or second order systeene implemented. The reduction algorithms are
based on IRKA and were adapted for the special systems of FEelsoccurring in the simulation of machine
tools. For the problem at hand the methods with more than mpansion point should be used, because they
give better results at a wider range of frequencies. In tiesponse we obtained similar approximation results
whether by using reduction methods for first order systemseoond order systems. For the entire frequency
range considered here the reduced systems obtained withdserder methods have a better relative error than the
reduced systems obtained with first order methods. The gemamier form of a system is half as large as the first
order form because by the transformation process the dioreafthe system doubles. Therefore the reduction of
the second order system may be more effective if the dimamndithe original model is very large. So the methods
for reducing second order systems are to prefer for probleithsvery large system matrices.

Krylov subspace methods yield reduced models approximatia original transfer function and time response
quite well. Reduced systems obtained via Krylov subspadhads yield slightly better approximation results
than systems reduced with BTA.

Krylov subspace methods are suitable for the reductionratatral mechanical FE models obtained by CAD
environments like HSTRAN. With these methods reduced models are obtained in a vexgtio way which have
very similar approximation abilities like modal or BTA rezkd models.
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