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Peter BennerZentrum f�ur TechnomathematikFachbereich 3 - Mathematik und InformatikUniversit�at BremenD-28334 Bremen, GermanyE-mail: benner@math.uni-bremen.deAbstractThe numerical solution of discrete-time algebraic Ric-cati equations is discussed. We propose to computean approximate solution of the discrete-time algebraicRiccati equation by the (buttery) SZ algorithm. Thissolution is then re�ned by a defect correction methodbased on Newton's method. The resulting method isvery e�cient and produces highly accurate results.Keywords. discrete-time algebraic Riccati equation,Newton's method, SZ algorithm, symplectic matrixpencil, defect correction1 IntroductionThe standard (discrete-time) linear-quadratic opti-mization problem consists in �nding a control trajec-tory fu(t); t � 0g, minimizing the cost functionalJ (x0; u) = 1Xt=0[x(t)TQx(t) + u(t)TRu(t)]in terms of u subject to the dynamical constraintx(t+ 1) = Ax(t) +Bu(t); x(0) := x0:Under certain conditions there is a unique control law,u(t) = Hx(t); H := �(R+BTXB)�1BTXA;minimizing J in terms of u subject to the dynamicalconstraint. The matrix X is the unique symmetric sta-bilizing solution of the algebraic matrix Riccati equa-tion0 = DR(X) = Q�X +ATXA�ATXB(R+BTXB)�1BTXA: (1)The last equation is usually referred to as discrete-timealgebraic Riccati equation (DARE). It appears not only

in the context presented, but also in numerous proce-dures for analysis, synthesis, and design of control andestimation systems with H2 or H1 performance crite-ria, as well as in other branches of applied mathematics.The DARE (1) can be considered as a nonlinear setof equations. Therefore, Newton's method has beenone of the �rst methods proposed to solve DAREs [8].Given a symmetric matrixX0, the method can be givenin algorithmic form as follows:FOR k = 0; 1; 2; : : :Ak  A�B(R +BTXkB)�1BTXkA:Solve for Nk in the Stein equationATkNkAk �Nk = �DR(Xk):Xk+1  Xk +NkEND FORIt is well known that (under certain reasonable assump-tions) if X0 is a stabilizing starting guess, then all it-erates are stabilizing and converge globally quadraticto the desired solution X (see, e.g., [8, 9, 11]). Despitethe ultimate rapid convergence, the iteration may ini-tially converge slowly. This can be due to a large ini-tial error jjX � X0jj or a disastrously large �rst New-ton step resulting in a large error jjX �X1jj. In bothcases, it is possible that many iterations are required to�nd the region of rapid convergence. An ill-conditionedStein equation makes it di�cult to compute an accu-rate Newton step. An inaccurately computed Newtonstep can cause the usual convergence theory to breakdown in practise. Sometimes rounding errors or a poorchoice of X0 cause Newton's method to converge to anon-stabilizing solution.For these reasons, Newton's method is usually not usedby itself to solve DAREs. Usually it is used as a defectcorrection method or for iterative re�nement of an ap-proximate solution obtained by a more robust method.A defect correction method can be based on the fol-lowing result of Mehrmann and Tan [12, Theorem 2.7](see also [11, Chapter 10]).



Theorem 1 Let X be a symmetric solution ofDR(X) = 0. Let bX be a symmetric approximationto Xand set V := X � bX. If bR = R + BT bXB andI + V B bR�1BT are nonsingular, then V satis�es theDAREbATV bA� V � bATV B( bR +BTV B)�1BTV bA+ bQ = 0where bQ = DR( bX) and bA = (I �B bR�1BT bX)A:Hence, the error V ful�lls a discrete time algebraic Ric-cati equation just like the desired solution X . Thedefect discrete-time algebraic Riccati equation may besolved by any method for discrete-time algebraic Ric-cati equations. Most frequently, in situations like this,Newton's method is used [8, 11, 9, 2]. Then V can beused to correct bX. Iterating this process until DR(X)is suitably small is called a defect correction method.Using this approach, it is often possible to squeeze outthe maximum possible accuracy [11] after only a fewiterations.Here we propose to compute an approximate solutionbX of DR(X) by the (buttery) SZ algorithm. Com-bined with the defect correction method, the resultingmethod for solving (1) is a very e�cient method andproduces highly accurate results.Now assume R to be positive de�nite and de�neK � �N = � A 0Q I �� � � I �BR�1BT0 AT � : (2)Using the standard control-theoretic assumptions that� (A;B) is stabilizable,� (Q;A) is detectable,� Q is positive semide�nite,then K � �N has no eigenvalues on the unit circleand there exists a unique stabilizing solution X of theDARE (1); see, e.g., [9]. It is then easily seen thatK��N has precisely n eigenvalues in the open unit diskand n outside. Moreover, the Riccati solution X can begiven in terms of the deating subspace of K��N cor-responding to the n eigenvalues �1; : : : ; �n inside theunit circle using the relation� A 0Q I �� I�X � = � I �BR�1BT0 AT � � I�X ��where � 2 IRn�n, �(�) = f�1; : : : ; �ng. Therefore, ifwe can compute Y; Z 2 IRn�n such that the columnsof [ YZ ] span the desired deating subspace of K � �N ,then X = �ZY �1 is the desired solution of the Riccatiequation (1). See, e.g., [9, 10, 11], and the referencestherein.

It is worthwhile to note that K��N of the form (2) isa symplectic matrix pencil. A symplectic matrix pencilK � �N;K;N 2 IR2n�2n; is de�ned by the propertyKJKT = NJNT ;where J = � 0 In�In 0 �and In is the n�n identity matrix. The nonzero eigen-values of a symplectic matrix pencil occur in reciprocalpairs: If � is an eigenvalue of K � �N with left eigen-vector x, then ��1 is an eigenvalue of K � �N withright eigenvector (Jx)T .The numerical computation of a deating subspace ofa (symplectic) matrix pencil K��N is usually carriedout by an iterative procedure like the QZ algorithm.The QZ algorithm is numerically backward stable butit ignores the symplectic structure. Applying the QZalgorithm to a symplectic matrix pencil results in ageneral 2n�2nmatrix pencil in generalized Schur formfrom which the eigenvalues and deating subspaces canbe read o�. Due to roundo� errors unavoidable in�nite-precision arithmetic, the computed eigenvalueswill in general not come in pairs f�; ��1g, althoughthe exact eigenvalues have this property. Even worse,small perturbations may cause eigenvalues close to theunit circle to cross the unit circle such that the numberof true and computed eigenvalues inside the open unitdisk may di�er. Moreover, the application of theQZ al-gorithm to K��N is computationally quite expensive.The usual initial reduction to Hessenberg-triangularform requires about 70n3 ops plus 24n3 for accumu-lating the Z matrix; each iteration step requires about88n2 ops for the transformations and 136n2 ops foraccumulating Z; see, e.g., [13]. An estimated 40n3 opsare necessary for ordering the generalized Schur form.This results in a total cost of roughly 415n3 ops forsolving a DARE using the QZ algorithm, using stan-dard assumptions about convergence of the QZ itera-tion (see, e.g., [7]).Here we propose to use the buttery SZ algorithm forcomputing the deating subspace of K��N . The but-tery SZ algorithm [4, 6] is a structure-preserving al-gorithm. It makes use of the fact that any symplecticmatrix pencil can be reduced to a matrix pencil of theform 264 @@@ @@@0 @@@ 375� �264 0 @@@@@@ @@@@@@@ 375which is determined by just 4n� 1 parameters. By ex-ploiting this special reduced form, the SZ algorithm is



fast and e�cient; in each iteration step onlyO(n) arith-metic operations are required instead of O(n2) arith-metic operations for a QZ step. We thus save a signif-icant amount of work. Of course, the accumulation ofthe Z matrix is O(n2) as in the QZ step. Moreover, byforcing the symplectic structure the above mentionedproblems of the QZ algorithm are avoided. Combinedwith a defect correction method, the resulting methodfor solving discrete-time algebraic Riccati equations isa very e�cient method and produces highly accurateresults. 2 The buttery SZ algorithmFor simplicity let us assume at the moment that Ais nonsingular. Premultiplying K � �N by � I 00 A�T �results in a symplectic matrix pencilK 0 � �N 0 = � A 0A�TQ A�T �� � � I �BR�1BT0 I � ;where K 0; N 0 are both symplectic. In [4, 6] it is shownthat for every symplectic matrix pencil L � �M withLJLT =MJMT = J there exist numerous symplecticmatrices Z and nonsingular matrices S such thatS(L� �M)Z = � C F0 C�1 �� � � 0 �II T � ;where C and F are diagonal matrices, and T is a sym-metric tridiagonal matrix. Such a symplectic matrixpencil is called a symplectic buttery pencil. If T is anunreduced tridiagonal matrix, then the buttery pen-cil is called unreduced. If any of the n� 1 subdiagonalelements of T are zero, the problem can be split into atleast two problems of smaller dimension, but with thesame symplectic buttery structure.Once the reduction to a symplectic buttery pencil isachieved, the SZ algorithm is a suitable tool for com-puting the eigenvalues/deating subspaces of the sym-plectic pencil. The SZ algorithm preserves the sym-plectic buttery form in its iterations. It is the ana-logue of the SR algorithm for the generalized eigen-problem, just as the QZ algorithm is the analogue ofthe QR algorithm for the generalized eigenproblem.Both are instances of the GZ algorithm [14].Each iteration step begins with L andM such that thebuttery pencil L� �M is unreduced. Choose a spec-tral transformation function q and compute a symplec-tic matrix Z1 such thatZ�11 q(M�1N)e1 = �e1for some scalar �. Then transform the pencil tofM � � eN = (M � �N)Z1:

This introduces a bulge into the matrices fM and eN .Now transform the pencil tocM � � bN = S�1(fM � � eN) eZ;where cM and bN are of symplectic buttery form. S andeZ are symplectic, and eZe1 = e1. This concludes theiteration. Under certain assumption, it can be shownthat the buttery SZ algorithm converges cubically.For a detailed discussion of the buttery SZ algorithmsee [4, 6].Given a symplectic pencil L � �M , where LJLT =MJMT = J , �rst symplectic matrices Z0 and S0 arecomputed such thatbL� �cM := S�10 LZ0 � �S�10 MZ0is a symplectic buttery pencil. Using the butterySZ algorithm, symplectic matrices Z1 and S1 are com-puted such that S�11 bLZ1 � �S�11 cMZ1is a symplectic buttery pencil and the symmetric tridi-agonal matrix bT in the lower right block of S�11 cMZ1is reduced to quasi-diagonal form with 1� 1 and 2� 2blocks on the diagonal. The eigenproblem decouplesinto a number of simple 2 � 2 or 4 � 4 generalizedsymplectic eigenproblems. Solving these subproblems,�nally symplectic matrices Z2; S2 are computed suchthat S�12 S�11 bLZ1Z2 = � �11 �120 �22 � ;S�12 S�11 cMZ1Z2 = �  11  120  22 � ;where the eigenvalues of the matrix pencil �11 � � 11are precisely the n stable generalized eigenvalues. LetZ = Z0Z1Z2. Partitioning Z conformably,Z = � Z11 Z12Z21 Z22 � ; (3)the Riccati solution X is found by solving a system oflinear equations: X = �Z21Z�111 : (4)Instead of generating the symplectic matrix Z as in(3), one can work with n � n matrices X;Y and Tsuch that �nally X = �Z21Z�111 ; Y = Z�111 Z12, andT = Z�111 . Starting from X = Y = 0; T = I , this canbe implemented without accumulating the intermedi-ate symplectic transformations used in the butterySZ algorithm, just using the parameters that deter-mine these transformations. As for every symplecticmatrix Z written in the form (3), Z21Z�111 is symmet-ric, this approach guarantees that all intermediate (and



the �nal) X are symmetric. Such an approach, calledsymmetric updating was �rst proposed by Byers andMehrmann [5] in the context of solving continuous-timealgebraic Riccati equations via the Hamiltonian SR al-gorithm and has also been proposed for solving DAREswith an SR algorithm in [1].If the so computed approximate solution of the DAREis re�ned using Newton's method, usually the samenumber of iterations is required as when re�ning anapproximation computed by the QZ algorithm. Evenif one or two iterations more are necessary due to theloss of accuracy caused by using non-orthogonal trans-formations, this is well compensated by the cheaper SZiteration.3 A hybrid method for DAREsCombined with a strategy to deate zero and in�nityeigenvalues from the symplectic pencil in order to dealwith discrete-time algebraic Riccati equations with sin-gular A matrix, the hybrid method consisting of theSZ algorithm followed by a few Newton iteration stepsresults in an e�cient and accurate method.Altogether, we propose the following algorithm to solvethe DARE (1).Algorithm 1Input: The coe�cient matrices A 2 IRn�n, B 2IRn�m, Q = QT 2 IRn�n, and R 2 IRm�m.Output: An approximation ~X = ~XT 2 IRn�n to thestabilizing solution of the DARE.1. Form the symplectic pencil K � �N as in (2).2. Use Algorithm 15.16 of [11] to deate all zero andin�nite eigenvalues of K � �N . That is, com-pute a nonsingular transformation matrix T1 anda symplectic matrix S1 such thatT1(K � �N)S1 =24 0 ~A1 0 00 ~A 0 00 0 In�k 00 ~Q 0 Ik 35� �24 In�k 0 � ~G11 � ~G120 In�k � ~GT12 � ~G220 0 0 00 0 � ~AT1 � ~AT 35and �rst n � k columns of S1 span the deatingsubspace of K � �N corresponding to the zeroeigenvalues.3. Apply the buttery SZ algorithm described Sec-tion 2 (and in detail in [4]) to the symplectic pen-cil ~K � � ~N :=�Ik 00 ~A�T �� ~A 0~Q Ik�� � �Ik � ~G220 � ~AT �

such that~T2( ~K � � ~N) ~S2 = � �11 �120 �22 �� � �  11  120  22 � ;where the eigenvalues of �11�� 11 are the stablenonzero eigenvalues of K � �N .4. Partition ~S2 = � S11 S12S21 S22 � where Sjj 2 IRk�k , j =1; 2. Set Z := S1 " In�k 0 0 00 S11 0 S120 0 In�k 00 S21 0 S22 # :Then the �rst n columns of Z span the stabledeating subspace ofK��N and an approximatesolution bX of the DARE can be computed as in(4).5. Use Newton's method endowed with a line searchstrategy as proposed in [2] and starting guessX0 = bX in order to iteratively re�ne the solutionof the DARE to the highest achievable accuracy.Note that all left transformation matrices need not beaccumulated. The accumulation of the right transfor-mation matrices and the computation of bX via (4) canbe avoided using the symmetric updating technique asmentioned at the end of Section 2.More details of the algorithm and its implementationas well as a thorough numerical study regarding per-formance and accuracy will be reported in [3].4 Concluding remarksWe have discussed the numerical solution of discrete-time Riccati equations. By initializing Newton'smethod with a starting guess computed by applyingthe buttery SZ algorithm combined with a methodfor deating zero and in�nite eigenvalues to the cor-responding symplectic matrix pencil, an e�cient andaccurate hybrid method is derived.References[1] G. Banse. Symplektische Eigenwertverfahrenzur L�osung zeitdiskreter optimaler Steuerungsprobleme.Dissertation, Fachbereich 3 { Mathematik und Infor-matik, Universit�at Bremen, Bremen, FRG, June 1995.In German.[2] P. Benner. Accelerating Newton's method fordiscrete-time algebraic Riccati equations. In Proc.MTNS 98, Padova, Italy, 1998. To appear.[3] P. Benner and H. Fa�bender. A hybrid methodfor the numerical solution of discrete-time algebraicRiccati equations. In preparation.
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