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Abstract

The numerical solution of discrete-time algebraic Ric-
cati equations is discussed. We propose to compute
an approximate solution of the discrete-time algebraic
Riccati equation by the (butterfly) SZ algorithm. This
solution is then refined by a defect correction method
based on Newton’s method. The resulting method is
very efficient and produces highly accurate results.
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1 Introduction

The standard (discrete-time) linear-quadratic opti-
mization problem consists in finding a control trajec-
tory {u(t),t > 0}, minimizing the cost functional

o

T (z0,u) =Y _[2()7 Qa(t) + u(t)" Ru(t)]

t=0

in terms of u subject to the dynamical constraint

z(t+1) = Az(t) + Bu(t), z(0) := zo.

Under certain conditions there is a unique control law,

u(t) = Hx(t) H:=—(R+BT'XB)'BTXxA,

minimizing 7 in terms of u subject to the dynamical
constraint. The matrix X is the unique symmetric sta-
bilizing solution of the algebraic matrix Riccati equa-
tion

0=DR(X)=Q—-X+ATXA
~-ATXB(R+BTXB) 'BTXA. (1)

The last equation is usually referred to as discrete-time
algebraic Riccati equation (DARE). It appears not only
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in the context presented, but also in numerous proce-
dures for analysis, synthesis, and design of control and
estimation systems with Hy or H., performance crite-
ria, as well as in other branches of applied mathematics.

The DARE (1) can be considered as a nonlinear set
of equations. Therefore, Newton’s method has been
one of the first methods proposed to solve DAREs [8].
Given a symmetric matrix Xy, the method can be given
in algorithmic form as follows:

FOR k =0,1,2,...
Ap <+~ A— B(R+ BTXB)"'BT X A.
Solve for Ny, in the Stein equation
AT N Ay — N = —DR(Xy).
Xpy1 < Xi + Ny,
END FOR

It is well known that (under certain reasonable assump-
tions) if X is a stabilizing starting guess, then all it-
erates are stabilizing and converge globally quadratic
to the desired solution X (see, e.g., [8, 9, 11]). Despite
the ultimate rapid convergence, the iteration may ini-
tially converge slowly. This can be due to a large ini-
tial error ||X — Xp|| or a disastrously large first New-
ton step resulting in a large error || X — X;||. In both
cases, it is possible that many iterations are required to
find the region of rapid convergence. An ill-conditioned
Stein equation makes it difficult to compute an accu-
rate Newton step. An inaccurately computed Newton
step can cause the usual convergence theory to break
down in practise. Sometimes rounding errors or a poor
choice of Xy cause Newton’s method to converge to a
non-stabilizing solution.

For these reasons, Newton’s method is usually not used
by itself to solve DAREs. Usually it is used as a defect
correction method or for iterative refinement of an ap-
proximate solution obtained by a more robust method.
A defect correction method can be based on the fol-
lowing result of Mehrmann and Tan [12, Theorem 2.7]
(see also [11, Chapter 10]).



Theorem 1 Let X be a symmetric solution of
DR(X) = 0. Let X be a symmetric approzimation
to Xand set V := X - X. If]A% = R+ BTXB and
I + VBR™'BT are nonsingular, then V satisfies the
DARE

ATVA-V —ATVB(R+BTVB) 'BTVA+Q =0

where Q = DR(X) and A = (I - BR'BTX)A.

Hence, the error V fulfills a discrete time algebraic Ric-
cati equation just like the desired solution X. The
defect discrete-time algebraic Riccati equation may be
solved by any method for discrete-time algebraic Ric-
cati equations. Most frequently, in situations like this,
Newton’s method is used [8, 11, 9, 2]. Then V can be
used to correct X. Iterating this process until DR(X)
is suitably small is called a defect correction method.
Using this approach, it is often possible to squeeze out
the maximum possible accuracy [11] after only a few
iterations.

Here we propose to compute an approximate solution
X of DR(X) by the (butterfly) SZ algorithm. Com-
bined with the defect correction method, the resulting
method for solving (1) is a very efficient method and
produces highly accurate results.

Now assume R to be positive definite and define

. “1RT
K—AN:{A 0}_%1 BR'B

Q I 0 AT : (2)

Using the standard control-theoretic assumptions that

e (A, B) is stabilizable,
e (@, A) is detectable,

e () is positive semidefinite,

then K — AN has no eigenvalues on the unit circle
and there exists a unique stabilizing solution X of the
DARE (1); see, e.g., [9]. It is then easily seen that
K — AN has precisely n eigenvalues in the open unit disk
and n outside. Moreover, the Riccati solution X can be
given in terms of the deflating subspace of K — AN cor-
responding to the n eigenvalues Aq,... , A, inside the
unit circle using the relation

A0 I [ I -BR BT I A
FRIIEI R Y
where A € R™*", a(A) = {\1,...,\x}. Therefore, if
we can compute Y, Z € R™*" such that the columns
of [}] span the desired deflating subspace of K — AN,
then X = —ZY ! is the desired solution of the Riccati

equation (1). See, e.g., [9, 10, 11], and the references
therein.

It is worthwhile to note that K — AN of the form (2) is
a symplectic matrix pencil. A symplectic matriz pencil
K — AN, K,N € R>*>"_is defined by the property

KJKT = NJNT,

where

0 I,
=] ]

and I, is the n x n identity matrix. The nonzero eigen-
values of a symplectic matrix pencil occur in reciprocal
pairs: If X is an eigenvalue of K — AN with left eigen-
vector x, then A~! is an eigenvalue of K — AN with
right eigenvector (Jz)7.

The numerical computation of a deflating subspace of
a (symplectic) matrix pencil K — AN is usually carried
out by an iterative procedure like the QQZ algorithm.
The @ Z algorithm is numerically backward stable but
it ignores the symplectic structure. Applying the QZ
algorithm to a symplectic matrix pencil results in a
general 2n X 2n matrix pencil in generalized Schur form
from which the eigenvalues and deflating subspaces can
be read off. Due to roundoff errors unavoidable in
finite-precision arithmetic, the computed eigenvalues
will in general not come in pairs {\,A\~!}, although
the exact eigenvalues have this property. Even worse,
small perturbations may cause eigenvalues close to the
unit circle to cross the unit circle such that the number
of true and computed eigenvalues inside the open unit
disk may differ. Moreover, the application of the 7 al-
gorithm to K — AN is computationally quite expensive.
The usual initial reduction to Hessenberg-triangular
form requires about 70n? flops plus 24n? for accumu-
lating the Z matrix; each iteration step requires about
88n? flops for the transformations and 136n2 flops for
accumulating Z; see, e.g., [13]. An estimated 40n?® flops
are necessary for ordering the generalized Schur form.
This results in a total cost of roughly 415n® flops for
solving a DARE using the QZ algorithm, using stan-
dard assumptions about convergence of the QZ itera-
tion (see, e.g., [7]).

Here we propose to use the butterfly SZ algorithm for
computing the deflating subspace of K —AN. The but-
terfly SZ algorithm [4, 6] is a structure-preserving al-
gorithm. It makes use of the fact that any symplectic
matrix pencil can be reduced to a matrix pencil of the

form
NONTLTe N
o NI
which is determined by just 4n — 1 parameters. By ex-
ploiting this special reduced form, the SZ algorithm is



fast and efficient; in each iteration step only O(n) arith-
metic operations are required instead of O(n?) arith-
metic operations for a QZ step. We thus save a signif-
icant amount of work. Of course, the accumulation of
the Z matrix is O(n?) as in the QZ step. Moreover, by
forcing the symplectic structure the above mentioned
problems of the QZ algorithm are avoided. Combined
with a defect correction method, the resulting method
for solving discrete-time algebraic Riccati equations is
a very efficient method and produces highly accurate
results.

2 The butterfly SZ algorithm

For simplicity let us assume at the moment that A
is nonsingular. Premultiplying K — AN by [
results in a symplectic matrix pencil

0aor]

I o
K )\N_[ 0 7

A_TQ AT
where K', N’ are both symplectic. In [4, 6] it is shown
that for every symplectic matrix pencil L — AM with
LJLT = MJMT = J there exist numerous symplectic
matrices Z and nonsingular matrices S such that

S(L—/\M)Z:{g CF_l}—A[(I] _TI}

where C' and F are diagonal matrices, and T is a sym-
metric tridiagonal matrix. Such a symplectic matrix
pencil is called a symplectic butterfly pencil. If T is an
unreduced tridiagonal matrix, then the butterfly pen-
cil is called unreduced. If any of the n — 1 subdiagonal
elements of T are zero, the problem can be split into at
least two problems of smaller dimension, but with the
same symplectic butterfly structure.

Once the reduction to a symplectic butterfly pencil is
achieved, the SZ algorithm is a suitable tool for com-
puting the eigenvalues/deflating subspaces of the sym-
plectic pencil. The SZ algorithm preserves the sym-
plectic butterfly form in its iterations. It is the ana-
logue of the SR algorithm for the generalized eigen-
problem, just as the QZ algorithm is the analogue of
the QR algorithm for the generalized eigenproblem.
Both are instances of the GZ algorithm [14].

Each iteration step begins with L and M such that the
butterfly pencil L — AM is unreduced. Choose a spec-
tral transformation function ¢ and compute a symplec-
tic matrix Z; such that

Z Yq(M™'N)ey = aey
for some scalar a. Then transform the pencil to

M — AN = (M — AN)Z;.

A0 }_)\[I —BRlBT}

This introduces a bulge into the matrices M and N.
Now transform the pencil to

M — AN =S~Y(M - \N)Z

where M and N are of symplectic butterfly form. S and
Z are symplectic, and Ze; = e;. This concludes the
iteration. Under certain assumption, it can be shown
that the butterfly SZ algorithm converges cubically.
For a detailed discussion of the butterfly SZ algorithm
see [4, 6].

Given a symplectic pencil L — AM, where LJLT =
MJMT = J, first symplectic matrices Zo and Sy are
computed such that

L—\M:=S;'LZy— Sy ' MZ,

is a symplectic butterfly pencil. Using the butterfly
SZ algorithm, symplectic matrices Z; and S; are com-
puted such that
Sy'LZ, — AS; M Zy

is a symplectic butterfly pencil and the symmetric tridi-
agonal matrix T in the lower right block of S| 1MZ1
is reduced to quasi-diagonal form with 1 x 1 and 2 x 2
blocks on the diagonal. The eigenproblem decouples
into a number of simple 2 x 2 or 4 x 4 generalized
symplectic eigenproblems. Solving these subproblems,
finally symplectic matrices Z»,S> are computed such
that

NP _ $11 P12
S'ST 027y = { o }
a1 _ Y11 Yio
SIS 2,2, = { o }

where the eigenvalues of the matrix pencil ¢1; — A1q
are precisely the n stable generalized eigenvalues. Let
7 = ZyZyZy. Partitioning Z conformably,

Z11 Zio
Z = , 3
{ Zy  Za2 } ’ ®)

the Riccati solution X is found by solving a system of
linear equations:

X =—ZnZ7. (4)

Instead of generating the symplectic matrix Z as in
(3), one can work with n X n matrices X,Y and T
such that finally X = —Z7y7',Y = Z;,'Zis, and
T = Z;,'. Starting from X =Y = 0,7 = I, this can
be implemented without accumulating the intermedi-
ate symplectic transformations used in the butterfly
SZ algorithm, just using the parameters that deter-
mine these transformations. As for every symplectic
matrix Z written in the form (3), Zngfl1 is symmet-
ric, this approach guarantees that all intermediate (and



the final) X are symmetric. Such an approach, called
symmetric updating was first proposed by Byers and
Mehrmann [5] in the context of solving continuous-time
algebraic Riccati equations via the Hamiltonian SR al-
gorithm and has also been proposed for solving DAREs
with an SR algorithm in [1].

If the so computed approximate solution of the DARE
is refined using Newton’s method, usually the same
number of iterations is required as when refining an
approximation computed by the QZ algorithm. Even
if one or two iterations more are necessary due to the
loss of accuracy caused by using non-orthogonal trans-
formations, this is well compensated by the cheaper SZ
iteration.

3 A hybrid method for DAREs

Combined with a strategy to deflate zero and infinity
eigenvalues from the symplectic pencil in order to deal
with discrete-time algebraic Riccati equations with sin-
gular A matrix, the hybrid method consisting of the
SZ algorithm followed by a few Newton iteration steps
results in an efficient and accurate method.

Altogether, we propose the following algorithm to solve
the DARE (1).

Algorithm 1
Input: The coefficient matrices A € R"™", B €
R"™™,Q=QT ¢ R"", and R € R™*™.
Output: An approzimation X = XT € R™™" to the
stabilizing solution of the DARE.

1. Form the symplectic pencil K — AN as in (2).

2. Use Algorithm 15.16 of [11] to deflate all zero and
infinite eigenvalues of K — AN. That is, com-
pute a nonsingular transformation matrix 77 and
a symplectic matrix S; such that

T, (K — AN)S; =
0 A 0 o0 I_x 0 —Gi1 —Gia
0 A 0 O© Y 0 I,_1 —éfz —Gao
0 0 In_x O 0 0 0 0
0o o I 0 0o —AT —AT

and first n — k columns of S; span the deflating
subspace of K — AN corresponding to the zero
eigenvalues.

3. Apply the butterfly SZ algorithm described Sec-
tion 2 (and in detail in [4]) to the symplectic pen-
cil

K — AN :=

{Ik ~OH,& 0}_A[Ik —G22}
0 AT |Q I 0 -AT

such that

=~ = & b1 P12 } { Y11 Y12
T5(K — AN)S; = - A

2 )5 [ 0 0
where the eigenvalues of ¢11 — )11 are the stable
nonzero eigenvalues of K — AN.

4. Partition S, = [ 21! 312] where Sj; € R¥**, j =
1,2. Set

In.x 0 0 0O
— 0 S1 0 S
o[855
0 Sa1 0 Soao
Then the first n columns of Z span the stable
deflating subspace of K —AN and an approximate

solution X of the DARE can be computed as in
(4).

5. Use Newton’s method endowed with a line search
strategy as proposed in [2] and starting guess
Xo = X in order to iteratively refine the solution
of the DARE to the highest achievable accuracy.

Note that all left transformation matrices need not be
accumulated. The accumulation of the right transfor-
mation matrices and the computation of X via (4) can
be avoided using the symmetric updating technique as
mentioned at the end of Section 2.

More details of the algorithm and its implementation
as well as a thorough numerical study regarding per-
formance and accuracy will be reported in [3].

4 Concluding remarks

We have discussed the numerical solution of discrete-
time Riccati equations. By initializing Newton’s
method with a starting guess computed by applying
the butterfly SZ algorithm combined with a method
for deflating zero and infinite eigenvalues to the cor-
responding symplectic matrix pencil, an efficient and
accurate hybrid method is derived.
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