
A DETAILED DERIVATION OF THE PARAMETERIZED SR
ALGORITHM AND THE SYMPLECTIC LANCZOS METHOD FOR

HAMILTONIAN MATRICES∗

H. FAßBENDER†

Abstract. The implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue
problem is reconsidered here; restarts like the implicit restart als Sorensen and ala Stewart will be
discussed. The Lanczos vectors are constructed to form a symplectic basis. The inherent numerical
difficulties of the symplectic Lanczos method are addressed by inexpensive implicit restarts. The
heart of the implicitly restarted symplectic Lanczos method for Hamiltonian matrices consists of the
SR algorithm, a structure-preserving algorithm for computing the spectrum of Hamiltonian matrices.
The symplectic Lanczos method projects the large, sparse 2n × 2n Hamiltonian matrix H onto a
small, dense 2k × 2k Hamiltonian J-Hessenberg matrix eH, k ≪ n. This 2k × 2k Hamiltonian matrix
is uniquely determined by 4k − 1 parameters. Using these 4k − 1 parameters, we show how one
step of the SR algorithm can be carried out in O(k) arithmetic operations (compared to O(k3)
arithmetic operations when working on the actual Hamiltonian matrix). Moreover, the Hamiltonian
structure, which will be destroyed in the numerical process due to roundoff errors when working
with a Hamiltonian matrix, will be forced by working just with the parameters. As in the context
of the implicitly restarted symplectic Lanczos method the usual assumption, that the Hamiltonian
eigenproblem to be solved is stable, does not hold, the case of purely imaginary eigenvalues in the
SR algorithm is treated.

Key words. Hamiltonian Matrix; Eigenvalue Problem; SR Algorithm; Symplectic
Lanczos Algorithm.
AMS(MOS) subject classifications. 65F15.

1. Introduction. Renewed interest [94, 145, 19] in the implicitly restarted sym-
plectic Lanczos method for computing a few eigenvalues of a large, sparse Hamiltonian
matrix [17] led us to reconsider that algorithm. It projects the large, sparse 2n× 2n
Hamiltonian matrix H onto a small, dense 2k× 2k Hamiltonian J-Hessenberg matrix
H̃ , k ≪ n. This matrix H̃ is of the form


 @ @@@

@ @




that is, due to the Hamiltonian structure, it can be represented by 4k− 1 parameters
instead of the usual k2 matrix entries. As observed in [38], the SR algorithm preserves
the Hamiltonian J-Hessenberg form. A standard implementation of the SR algorithm
will require O(k3) flops in each iteration step. As pointed out in [38], using the
4k − 1 parameters one step of the SR algorithm for H can be carried out in O(k)
flops. Usually, this algorithm s implemented such that it works on the Hamiltonian
J-Hessenberg matrix itself, working in a narrow band around the diagonals of the
J-Hessenberg form. But, if no extra care is taken, the Hamiltonian structure will
be destroyed in the numerical process due to roundoff errors when working with a
Hamiltonian (J-Hessenberg) matrix.

In [38], the algorithm is discussed only for the case that the Hamiltonian matrix
is stable, that is, it has no eigenvalues on the imaginary axis. While this a reasonable
assumption in a number of applications, in the context of a restarted symplectic

∗WORK IN PROGRESS, VERSION NOVEMBER 6, 2006
†Technische Universität Braunschweig, Institut Computational Mathematics, 38106 Braun-

schweig, Germany, email: h.fassbender@tu-bs.de

1

Lanczos method in which small eigenproblems of Hamiltonian J-Hessenberg form
have to be solved, this cannot be assumed for the small eigenproblems even if the
original problem is stable.

Therefore, in this paper, we will develop an implementation of the SR algorithm
that cures the drawbacks of the existing SR algorithm for Hamiltonian matrices.
The implementation developed here can deal with eigenvalues on the imaginary axis.
Moreover, by working only with the 4k − 1 parameters describing the Hamiltonian
J-Hessenberg matrix, the implementation of one step of the SR algorithm can be
carried out in O(k) flops. The Hamiltonian structure is forced in each step; roundoff
errors cannot destroy the Hamiltonian structure. Our goal will be to derive a descrip-
tion of an implicit SR step such that the parameters which represent the resulting
matrix are computed directly from the original ones without ever forming the actual
Hamiltonian J-Hessenberg matrix or the bulge which is chased in the SR step. Nu-
merical experiments indicate that this extra care might make a positive difference in
the accuracy of the computed results.

Unfortunately, the presentation of the implicitly restarted symplectic Lanczos
algorithm in [17] considered only a single shift implicit restart and the discussion
of its properties is incorrect. Therefore, the implicitly restarted symplectic Lanczos
algorithm itself is reconsidered here in detail. Moreover, an implicit restart like the
Krylov-Schur restart proposed by Stewart [131, 130] will be discussed.

A Hamiltonian matrix H ∈ R
2n×2n has the form

H =

[
A G
Q −AT

]
, G = GT , Q = QT , (1.1)

where A,G and Q are real n × n matrices. A number of applications from control
theory and related areas lead to eigenvalue problems

• stability radius and H∞ norm computation [43, 31]
• linear quadratic optimal control problems and the solution of continuous-time

algebraic Riccati equations [12, 98, 123]
• H∞ control [14, 15]
• passivity preserving model reduction [5, 129, 19]
• quadratic eigenvalue problems [100, 135]
• computation of pseudo-spectra [40]

An ubiquitous matrix when dealing with Hamiltonian eigenvalue problems is the
skew-symmetric matrix

J =

[
0 I
−I 0

]
, (1.2)

where I denotes the n×n identity matrix. By straightforward algebraic manipulation
one can show that a Hamiltonian matrix H is equivalently defined by the property

HJ = (HJ)T . (1.3)

Any matrix S ∈ R2n×2n satisfying

STJS = SJST = J

is called symplectic, and since

(S−1HS)J = S−1HJS−T = S−1JTHTS−T = [(S−1HS)J]T , (1.4)

2

we see that symplectic similarity transformations preserve Hamiltonian structure.
There are relevant cases, however, where both H and S−1HS are Hamiltonian, but
S is not a symplectic matrix [60].

One of the most remarkable properties of a Hamiltonian matrix is that its eigen-
values always occur in pairs {λ,−λ} if λ is real or purely imaginary, or in quadru-
ples {λ,−λ, λ,−λ} otherwise. Hence, the spectrum of any Hamiltonian matrix is
symmetric with respect to the real and imaginary axis. Numerical methods that
take this structure into account are capable of preserving the eigenvalue pairings de-
spite the presence of roundoff errors. Figure 1.1, which displays the eigenvalues of
a Hamiltonian matrix stemming from a discretized Maxwell equation (obtained via
linearizing the quadratic eigenvalue) [122] illustrates this fact. The exact eigenvalues
are represented as grey dots in each plot; one can clearly see the eigenvalue pairing
{λ,−λ, λ,−λ} for complex eigenvalues with nonzero real part and {λ,−λ} for real and
purely imaginary eigenvalues. Eigenvalue approximations (denoted by black crosses)
have been computed with two different types of Arnoldi methods: in the plot on the
left hand side the eigenvalue approximations were obtained from a few iterations of
the standard Arnoldi method [65] while the ones in the plot on the right hand side
were obtained from the same number of iteration of an Arnoldi method that takes
Hamiltonian structures into account [100]. The latter method clearly produces pairs
of eigenvalue approximations. Besides the preservation of such eigenvalue symme-
tries, there are several other benefits to be gained from using structure-preserving
algorithms in place of general-purpose algorithms for computing eigenvalues. These
benefits include reduced computational time and improved eigenvalue/-eigenvector
accuracy.

−20 −10 0 10 20
−200

−150

−100

−50

0

50

100

150

200

−20 −10 0 10 20
−200

−150

−100

−50

0

50

100

150

200

Fig. 1.1. Eigenvalues (’·’) and approximate eigenvalues (’⋆’) computed by a standard Arnoldi
method (left picture) and by a structure-preserving Arnoldi method (right picture).

Hence, in order to develop fast and efficient numerical methods for the Hamil-
tonian eigenproblem one should make use of the rich mathematical structure of the
problem. This has been successfully done for symmetric/Hermitian and orthogo-
nal/unitary eigenproblems. E.g., for the symmetric eigenproblem, one of the nowadays
standard approaches involves first the reduction of the symmetric matrix to symmet-
ric tridiagonal form followed by a sequence of implicit QR steps which preserve this
symmetric tridiagonal form, see, e.g., [65]. Such structure preserving methods are

3

desirable as important properties of the original problem are preserved during the
actual computations and are not destroyed by rounding errors. Moreover, in general,
such methods allow for faster computations than general-purpose methods. For the
symmetric eigenproblem, e.g., applying implicit QR steps to the full symmetric matrix
requires O(n3) arithmetic operations per step, while applying an implicit QR step to
the similar symmetric tridiagonal matrix requires only O(n) arithmetic operations,
where n is the order of the matrix. If the matrix under consideration is large and
sparse, the QR method might not be a suitable tool for computing the eigeninforma-
tion. In that case, usually the Lanczos method [82, 65], a technique especially tuned
to solve large, sparse symmetric eigenproblems should be used.

The eigenvalues and invariant subspaces of Hamiltonian matrices H may be com-
puted by the QR algorithm [65]. But the QR method cannot take advantage of the
Hamiltonian structure of H , it will treat H like any arbitrary 2n × 2n matrix. The
computed eigenvalues will in general not come in quadruple λ,−λ, λ,−λ, although
the exact eigenvalues have this property. Even worse, small perturbations may cause
eigenvalues close to the imaginary axis to cross the axis such that the number of true
and computed eigenvalues in the right half plane may differ.

To preserve the Hamiltonian structure of H , we would have to employ similarity
transformations with symplectic matrices instead of the transformations with the
usual unitary matrices in the QR algorithm. Under certain conditions a Hamiltonian
matrix H may be reduced to Hamiltonian Hessenberg form

UTHU =


 @@

* @@




using a symplectic and orthogonal transformation matrix U . Byers [41] derived a
simple method for reducing H to such a form under the assumption that one of the
off-diagonal blocks G or Q in H has tiny rank, i.e., rank 1, 2 or at most 3. This form
stays invariant under a QR like iteration which uses only symplectic and orthogonal
transformations. However, the computation of the initial unreduced Hamiltonian Hes-
senberg form is not always possible. As shown in [3] the components of the first column
of U must satisfy a system of n quadratic equations in 2n unknowns. Consequently,
such a reduction is not always possible. Hence, more general QR like methods have
to be considered in order to derive a structure-preserving QR like eigenvalue method
for the Hamiltonian eigenproblem.

Paige and Van Loan introduced in [108] the Hamiltonian Schur form of a (com-
plex) Hamiltonian matrix. For any Hamiltonian matrix

M =

[
A N
K −AH

]
, NH = N,KH = K,A,N,K ∈ C

n×n

whose eigenvalues have nonzero real part, there exists a unitary and symplectic matrix

Q =

[
Q11 Q12

−Q12 Q11

]
, Q11, Q12 ∈ C

n×n

such that

QHMQ =

[
T R
0 −TH

]
, T, R ∈ C

n×n

4

where T is upper triangular and RH = R. Q can be chosen so that the eigenvalues
of T are in the left half plane. Lin and Ho [91] extended this result to the case that
M has eigenvalues on the imaginary axis. See also [81, 92]. In case H is real, a real
orthogonal and symplectic matrix Q can be found such that

QTMQ =

[
T R
0 −T T

]
, T, R ∈ R

n×n

where T is upper quasi-triangular and RT = R. Q can be chosen so that the eigen-
values of T are in the left half plane. Unfortunately, the numerical computation of
the Hamiltonian Schur form via strongly backward stable O(n3) method has been an
open problem since its introduction. Only in special cases a satisfactory solution has
been obtained [42]. If the Hamiltonian QR algorithm has successfully computed a
Hamiltonian Schur decomposition, then the first n columns of the orthogonal sym-
plectic matrix Q span an isotropic subspace belonging to the eigenvalues of T . Many
applications require the stable invariant subspace, for this purpose the Schur decom-
position has to be reordered so that T contains all eigenvalues with negative real part.
See [41] for details. A perturbation analysis for the Hamiltonian Schur form can be
found in [75].

Jacobi-like methods for computing the Hamiltonian Schur form are proposed in
[44, 37]. In [56] Jacobi-like algorithm for solving the complete eigenproblem for Hamil-
tonian (and skew-Hamiltonian) matrices that are also symmetric or skew-symmetric
are developed. These methods employ a sequence of easy to determine unitary sym-
plectic similarity transformations. In addition to preserving structure, these algo-
rithms are inherently parallelizable, and numerically stable. The stability in particular
of the latter algorithms has been investigated in [134].

In [136] Van Loan suggests the squared-reduced method for computing all eigen-
values of a Hamiltonian matrix. In this method, a real Hamiltonian matrix H is first
squared H2 = N , then a symplectic orthogonal matrix Q is constructed such that

QTNQ =

[
X R
0 XT

]

where X is upper Hessenberg. The QR algorithm is used to compute the eigenvalues
µ1, . . . , µn of X . The eigenvalues λj of H can be obtained by taking the square-
roots located in the left-half plane of µj : λj =

√
µj , λn+j = −λj for j = 1, . . . , n.

Unfortunately a loss of half of the possible accuracy in the eigenvalues is possible
when using this algorithm [136].

Based on the ideas of Paige and Van Loan [108] and Van Loan [136], Ammar,
Benner and Mehrmann [1] proposed the multishift algorithm for computing an invari-
ant subspace of dimension n of H . First, all eigenvalues of H are computed via the
square-reduced method [136], next the n desired eigenvalues λ1, . . . , λn are chosen,
x = (H − λ1I) . . . (H − λnI)e1 is formed and a symplectic orthogonal matrix Q1 is
computed such that QT1 x = α1e1. Next QT1HQ1 is reduced to the Hamiltonian Schur
form [108]. Essentially, the desired invariant subspace can be read off.

In [27], Benner, Mehrmann and Xu propose a numerically backward stable method
to compute the eigenvalues (but not the invariant subspaces) of real Hamiltonian
matrices using an approach via non-similarity transformations which exploits that
one can compute the real skew-Hamiltonian matrix H2 without forming the square
and which makes use of a symplectic URV decomposition. Its drawback is that it
does not take full advantage of the structure of H . It is not yet clear whether the

5

method is strongly backward stable. Based on this algorithm, in [26], the authors
employ a relationship between the eigenvalues and invariant subspaces of H and the
extended matrix

[
0 H
H 0

]

to develop a backward stable, structure preserving O(n3) method for computing all
eigenvalues and invariant subspaces of H . The extension of these algorithms to the
complex case is considered in [28]. Implementations of the algorithms in [27] and
[26] are freely available from the HAPACK package1[23]. Using the ideas of [26, 27],
Chu, Liu and Mehrmann suggest in [48] a numerically strongly backward stable O(n3)
method for computing the Hamiltonian Schur form of a Hamiltonian matrix that has
no purely imaginary eigenvalues.

Algorithms based on symplectic but non-orthogonal transformations include the
SR algorithm (which will be studied in detail in the following sections) [38, 98] and
related methods [39, 115]. The SR algorithm is applicable to real matrices of even
dimensions 2n × 2n. Almost every matrix A ∈ R2n×2n can be decomposed into a
product A = SR where S is symplectic and R is J-triangular [53], that is,

R =

[
R11 R12

R21 R22

]

where all submatrices Rij ∈ Rn×n are upper triangular, and R21 is strictly upper
triangular (if one performs a perfect shuffle of the rows and columns of a J-triangular
matrix, one gets an upper triangular matrix). The SR decomposition is essentially
unique (that is, the factorization is unique upto symplectic factors of the form

[
C−1 F

0 C

]
,

where C and F are n×n diagonal matrices). The SR algorithm is an QR-like iterative
algorithm that performs an SR decomposition at each iteration. If Hi is the current
iterate, then a spectral transformation function q is chosen and the SR decomposition
of q(Hi) is formed, if possible:

q(Hi) = SR.

Then the symplectic factor S is used to perform a similarity transformation on H to
yield the next iterate,

Hi+1 = S−1HiS.

As only symplectic similarity transformations are performed, the SR algorithm pre-
serves the Hamiltonian structure.

Any Hamiltonian matrix can be reduced to Hamiltonian J-Hessenberg form [38]


 @ @@@

@ @


 ,

1see the HAPACK homepage http://www.tu-chemnitz.de/mathematik/hapack/

6

where each block is an n×n matrix. Due to the Hamiltonian structure, the (1, 1) and
the (2, 2) block are identical, while the (1, 2) block is symmetric. Hence any Hamil-
tonian matrix can be represented by 4n− 1 parameters. As observed in [38], the SR
algorithm preserves the Hamiltonian J-Hessenberg form. A standard implementation
of the SR algorithm will require O(n3) flops in each iteration step. Using the 4n− 1
parameters we show in the following sections how one step of the SR algorithm for H
can be carried out in O(n) flops. Moreover, the Hamiltonian structure which will be
destroyed in the numerical process due to roundoff errors when working with a Hamil-
tonian (J-Hessenberg) matrix, will be forced by working just with the parameters.
The general convergence theory for GR methods developed by Elsner and Watkins
in [142] implies that the SR algorithm for Hamiltonian matrices is typically cubically
convergent. A connection between the SR algorithm on a 2n × 2n Hamiltonian J-
Hessenberg matrix and the HR algorithm on an n × n tridiagonal sign-symmetric
matrix is discussed in [21].

It is not recommended to use the SR algorithm just by itself for solving a Hamil-
tonian eigenproblem, as it is potentially unstable. It is the method of choice in
connection with the symplectic Lanczos method for Hamiltonian matrices, as will be
discussed here. In case, one would like to use the SR algorithm, it should be accom-
panied by a defect-correction method like the Newton method in order to improve
the accuracy of the computed results.

A few attempts have been made to create structure–preserving methods using
a symplectic Lanczos method. The symplectic Lanczos method proposed by Mei
[103] works with the squared Hamiltonian matrix and suffers from stability problems
as well as from breakdown. There are several variants of symplectic Lanczos pro-
cesses for Hamiltonian matrices available which create a Hamiltonian J-Hessenberg
matrix, [17, 57, 139]. In [64], Freund and Mehrmann present a symplectic look–ahead
Lanczos algorithm which overcomes breakdown by giving up the strict Hamiltonian
J–Hessenberg form.

For any Hamiltonian matrixH the matricesH2, (H−σI)−1(H+σI)−1 with σ ∈ R

and (H − σI)−1(H + σI)−1(H − σI)−1(H + σI)−1 with σ ∈ C are skew-Hamiltonian
matrices. The standard (implicitly restarted) Arnoldi method [126] automatically
preserves this structure. This led to the development of the SHIRA method [7, 101]
as a structure-preserving (shift-and-invert) Arnoldi method for Hamiltonian matrices.

In this paper we combine the ideas of implicitly restarted Lanczos methods [46, 66,
126] together with ideas to reflect the Hamiltonian structure and present a restarted
symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. Implicitly
restarted Lanczos methods typically have a higher numerical accuracy than explicit
restarts and moreover they are more economical to implement [66].

A completely different class of algorithms is based on the matrix sign function, see,
e.g., [12, 98, 123] and the references therein. Newton-like methods directed towards
the computation or refinement of stable invariant subspaces for Hamiltonian matrices
can be found in [68, 99, 98, 81].

Balancing can be a beneficial pre-processing step for computing eigenvalues of
general matrices [105, 111]. Of course, standard balancing can be applied to a Hamil-
tonian matrix H as well; this, however, would destroy the structure of H and prevent
the subsequent use of structure-preserving algorithms. Benner has developed in [13]
a special-purpose balancing algorithm that is based on symplectic similarity transfor-
mations and thus preserves the structure of H . See also [22].

Structured condition numbers for invariant subspaces [45] and eigenvalues [74] of

7

structured matrices have been investigated as sometimes eigenvalues/invariant sub-
spaces of structured matrices are better conditioned with respect to structured pertur-
bations than with respect to general perturbations. The structured and the unstruc-
tured condition number for the stable invariant subspace of a Hamiltonian matrix are
always the same [45], while there is no or little difference between the structured and
the unstructured eigenvalue condition number [74].

This work is structured as follows. The notation and definitions used here are
introduced in Section 2.1. The basic properties of Hamiltonian matrices are discussed.
In Section 2.2 the general SR algorithm, the reduction of a general to J-Hessenberg
form and theH algorithm are reviewed. The general nonsymmetric Lanczos algorithm
is the subject of Chapter 2.3. Chapter 3 discussed the reduction of a Hamiltonian
matrix to Hamiltonian J-Hessenberg form. In particular, the 4n−1 parameters which
determine a Hamiltonian J-Hessenberg from can be read off directly.

Chapter 4 discusses the SR algorithm for Hamiltonian matrices in detail. An
equivalence between the HR and the Hamiltonian SR algorithm is given. As will be
shown in Chapter 5, the SR algorithm for a Hamiltonian J-Hessenberg matrix H can
be rewritten in a parameterized form that will work only with the 4n− 1 parameters
which determine H instead of the entire matrix in each iteration step. Thus only O(n)
flops per SR step are needed compared to O(n3) flops when working on the actual
Hamiltonian matrix. The key to the development of a SR algorithm working only on
the parameters is the observation that at any point in the implicit SR step only a
certain, limited number of rows and columns of the Hamiltonian J-Hessenberg matrix
is worked on. In the leading part of the intermediate matrices the Hamiltonian J-
Hessenberg form is already retained and is not changed any longer, while the trailing
part has not been changed yet. Hence, from the leading part the first parameters of
the resulting J-Hessenberg matrix can be read off, while from the trailing part the
last parameters of the original J-Hessenberg matrix can still be read off. Our goal will
be to derive the new parameters directly from the original ones without ever forming
the actual Hamiltonian J-Hessenberg matrix or the bulge which is chased in the SR
step.

Due to the special Hamiltonian eigenstructure, the spectral transformation func-
tion will be chosen either as

q2(H) = (H − µI)(H + µI), µ ∈ R or µ = iω, ω ∈ R,

or

q4(H) = (H − µI)(H + µI)(H − µI)(H + µI), µ ∈ C,Re(µ) 6= 0.

In case an exceptional shift step is needed in the SR algorithm, one might want to
use a single shift

q1(H) = H − µI, µ ∈ R.

Each of the three cases is treated separately in the Sections 5.1 - 5.3. The SR iteration
proceeds until the problem has completely decoupled into Hamiltonian J-Hessenberg
subproblems of size 2 × 2 or 4 × 4. In a final step each of these subproblems has
to be transform ed into a form from which the eigenvalues can be read off. In [38],
this was considered for the case that the small subproblems have no purely imaginary
eigenvalues. As this cannot be assumed in the context of the implicitly restarted
symplectic Lanczos method, the solution of these subproblems in the presence of

8

purely imaginary eigenvalues is discussed in Chapter 6. The computation of the
associated eigenvectors is the topic of Section 6.1. Numerical experiments are reported
in Chapter 7.

Chapter 8 deals with the symplectic Lanczos method for Hamiltonian matrices.
The structure–preserving Lanczos method generates a sequence of matrices

S2n,2k = [v1, v2, . . . , vk, w1, w2, . . . , wk] ∈ R
2n×2k

satisfying

HS2n,2k = S2n,2kH̃2k,2k + ζk+1vk+1e
T
2k (1.5)

where H̃2k,2k is a 2k × 2k Hamiltonian J–Hessenberg matrix. Without some form of
re–J–orthogonalization the symplectic Lanczos method is numerically unstable (see
Section 8.6.1 and the discussion there). Thus, the symplectic Lanczos method suf-
fers from the same numerical difficulties as any other Lanczos–like algorithm. One
approach to deal with the numerical difficulties of Lanczos-like algorithms is to im-
plicitly restart the symplectic Lanczos factorization. This was first introduced by
Sorensen [126] in the context of nonsymmetric matrices and the Arnoldi process.
Usually only a small subset of the eigenvalues is desired. As the eigenvalues of the
Hamiltonian J-Hessenberg matrices H2k,2k are estimates for the eigenvalues of H , the
length 2k symplectic Lanczos factorization (1.5) may suffice if the residual vector rk+1

is small. The idea of restarted Lanczos algorithms is to fix the number of steps in the
Lanczos process at a prescribed value k which is dependent on the required number
of approximate eigenvalues. The purpose of the implicit restart is to determine initial
vectors such that the associated residual vectors are tiny. Given (1.5), an implicit
Lanczos restart computes the Lanczos factorization

HS̆2n,2k = S̆2n,2kH̆2k,2k + r̆k+1e
T
2k

which corresponds to the starting vector

s̆1 = p(H)s1

(where p(H) ∈ R2n×2n is a polynomial) without having to explicitly restart the Lanc-
zos process with the vector s̆1. This process is iterated until the residual vector rk+1

is tiny. J–orthogonality of the k Lanczos vectors is secured by re–J–orthogonalizing
these vectors when necessary. This idea will be investigated in Section 8.4. As the
iteration progresses, some of the Ritz values may converge to eigenvalues of H long
before the entire set of wanted eigenvalues have. These converged Ritz values may be
part of the wanted or unwanted portion of the spectrum. In either case it is desirable
to deflate the converged Ritz values and corresponding Ritz vectors from the uncon-
verged portion of the factorization. If the converged Ritz value is wanted then it is
necessary to keep it in the subsequent factorizations; if it is unwanted then it must
be removed from the current and the subsequent factorizations. A short comment on
locking and purging techniques to accomplish this is given in Section 8.4.1. Most of
the complications in the purging and deflating algorithms come from the need to pre-
serve the structure of the decomposition, in particular, to preserve the J-Hessenberg
form and the zero structure of the vector eT2k. In [130], Stewart shows how to re-
lax the definition of an Arnoldi decomposition such that the purging and deflating
problems can be solved in a natural and efficient way. Since the method is centered

9

about the Schur decomposition of the Hessenberg matrix, the method is called the
Krylov-Schur method. In Section 8.5, a Krylov-Schur-like method for the symplectic
Lanczos method is presented as first developed in [132].

But first, in Chapter 8, we will discuss the truncated symplectic Lanczos factor-
izations in Section 8.1, that is, first we are concerned with finding conditions for the
symplectic Lanczos method terminating prematurely. This is a welcome event since in
this case we have found an invariant symplectic subspace S2n,2k and the eigenvalues
of H2k,2k are a subset of those of H . We will first discuss the conditions under which
the residual vector of the symplectic Lanczos factorization will vanish at some step
k. Then we will show how the residual vector and the starting vector are related.
Finally a result indicating when a particular starting vector generates an exact trun-
cated factorization is given. Stopping criteria which guarantee the required accuracy
of the computed Ritz values and vectors are discussed in Section 8.2.

The symplectic Lanczos algorithm described above will, in general, compute ap-
proximations to a few of the largest eigenvalues of a Hamiltonian matrix H . Some-
times only a few of its smallest eigenvalues are needed. Since these are also the
largest eigenvalues of H−1, a Krylov subspace method can be applied to H−1 to find
them. Since H−1 inherits the Hamiltonian structure of H , the symplectic Lanczos
method is an appropriate method in the interest of efficiency, stability and accuracy.
In situations where some prior information is given, one might prefer to use a shift
before inverting. Specifically, if we know that the eigenvalues of interest lie near τ , we
might prefer to work with (H − τI)−1. Unfortunately, the shift destroys the Hamil-
tonian structure. Appropriate shift-and-invert strategies are discussed in Section 8.3.
Numerical properties of the symplectic Lanczos algorithm are discussed in the final
section of this chapter. Numerical experiments are given in Chapter 9.

2. Preliminaries.

2.1. Notations, Definitions, and Basic Properties. We will employ House-
holder notational convention. Capital and lower case letters denote matrices and
vectors, respectively, while lower case Greek letters denote scalars. By Rn×k we de-
note the real n×k matrices, by Cn×k the complex n×k matrices. We use K to denote
R or C. The n × n identity matrix will be denoted by In,n, and the ith unit vector
by ei; I

n,n = [e1, e2, . . . , en]. Let

J2n,2n :=

[
0 In,n

−In,n 0

]
(2.1)

and P 2n,2n be the permutation matrix

P 2n,2n := [e1, e3, . . . , e2n−1, e2, e4, . . . , e2n] ∈ R
2n×2n. (2.2)

If the dimension of In,n, J2n,2n, or P 2n,2n is clear from the context, we leave off the
superscript. We denote by Zn,k the first k columns of a n× n matrix Z.

We define an indefinite inner product by

(x, y)J := xTJy, x, y ∈ R
2n×2n. (2.3)

Let A ∈ Kn×k. Then we will denote
• the (i, j)th entry of A by aij
• the jth row of A by Aj,1:k
• the jth column of A by A1:n,j

10

• the entries ℓ, ℓ+ 1, . . . ,m of the jth row of A by Aj,ℓ:m
• the entries ℓ, ℓ+ 1, . . . ,m of the jth column of A by Aℓ:m,j
• the transpose of A by AT ; if C = AT , then cij = aji

Corresponding notations will be used for vectors x ∈ Rn.
Sometimes we partition the matrix A ∈ K

n×k to obtain

A =



A11 · · · A1q

...
...

Ap1 · · · Apq




n1

np

(2.4)

k1 kq

where n1 + · · ·+np = n, k1 + · · ·+kq = k and Aij ∈ Kni×kj designates the (i, j) block
or submatrix.

Throughout this thesis we will use the terms eigenvalues, spectrum, and invariant
subspace as defined below.

Definition 2.1. Let A ∈ Kn×n.
• λ ∈ C is an eigenvalue of A if det(A− λI) = 0.
• σ(A) = {λ ∈ C| det(A− λI) = 0} is called the spectrum of A.
• U ⊂ Cm determines an invariant subspace of A with respect to the eigenvalues

in Λ = {λi|λi ∈ C, i = 1, . . . , k} if there exist U ∈ C
m×k, and K ∈ C

k×k such
that U has full column rank, Λ is the spectrum of K, AU = UK and the
columns of U span U . Sometimes we refer to U as the invariant subspace of
A.
• A subspace X ⊂ R2n is called isotropic if X ⊥ JX . A maximal isotropic

subspace is called Lagrangian.
• The spectral radius of A is defined by

ρ(A) = max{|λ| : λ ∈ σ(A)}.
We will make frequent use of the following notations.

• The Frobenius norm for A ∈ Kn×n will be denoted by

||A||F =

√√√√
n∑

i=1

n∑

j=1

|aij |2.

• The 2–norm of a vector x ∈ Kn will be denoted by

||x||2 = (xTx)
1
2 .

• The corresponding matrix norm for A ∈ Kn×n, the spectral norm, will be
denoted by

||A||2 = ρ(AHA)
1
2 .

• The condition number of a matrix A ∈ Kn×n using the 2–norm is denoted by

κ2(A) = ||A||2||A−1||2.
• The rank of a matrix A ∈ Km×n will be denoted by

rank(A) = dim(ran(A)),

where ran(A) denotes the range of A

ran(A) = {y ∈ K
m : y = Ax for some x ∈ K

n}.
11

• Given a collection of vectors a1, . . . , an ∈ Km, the set of all linear combina-
tions of these vectors is a subspace referred to as the span of {a1, . . . , an}

span{a1, . . . , an} =





n∑

j=1

βjaj : βj ∈ K



 .

• The determinant of A ∈ Rn×n is given by

det(A) =

n∑

j=1

(−1)j+1a1j det(A1j).

Here a1j denote the entries of A in the first row and A1j is an (n−1)×(n−1)
matrix obtained by deleting the first row and jth column of A.
• The leading principal submatrix of order m of a matrix A ∈ Rn×n is given

by A1:m,1:m. It will be denoted by Am,m. The trailing principle submatrix of
order m of a matrix A ∈ Rn×n is given by A(n−m+1):n,(n−m+1):n.
• The leading principal minor of order m of a matrix A ∈ Rn×n is the deter-

minant of the leading principal submatrix of order m, det(A1:m,1:m). The
trailing principal minor of order m of a matrix A ∈ Rn×n is the determinant
of the trailing principal submatrix of order m, det(A(n−m+1):n,(n−m+1):n).

We use the following types of matrices and matrix factorization for matrices of size
n× n.

Definition 2.2. Let A ∈ Kn×n, v ∈ Kn.
• A signature matrix is a diagonal matrix D = diag(d1, . . . , dn) where di ∈
{±1}.
• The matrix A is called D–symmetric if (DA)T = DA where D is a signature

matrix.
• The Krylov matrix K(A, v, j) ∈ Kn×j is defined by

K(A, v, j) = [v,Av, . . . , Aj−1v].

• A is an upper Hessenberg matrix if aij = 0 for i > j + 1, i, j = 1, . . . , n, that
is,

A =

[
@@

]
.

• A is an unreduced upper Hessenberg matrix if A is an upper Hessenberg matrix
with ai,i−1 6= 0, i = 2, . . . , n.
• A is an upper triangular matrix if aij = 0 for i > j, i, j = 1, . . . , n, that is,

A =

[
@

]
.

• A is a strict upper triangular matrix if A is an upper triangular matrix with
aii 6= 0, i = 1, . . . , n, that is,

A =

[
...@

]
.

12

• A is a quasi upper triangular matrix if it is a block matrix of the form (2.4)
with blocks of size 1×1 or 2×2 and Aij = 0 for i > j, i = 1, . . . , p, j = 1, . . . , q.
• A is a tridiagonal matrix if aij = 0 for i > j+1, and i < j−1, i, j = 1, . . . , n,

that is

A =

[
@@@

]
.

• A is an unreduced tridiagonal matrix if A is a tridiagonal matrix with ai,i−1 6=
0, i = 2, . . . , n and ai,i+1 6= 0, i = 1, . . . , n− 1.
• A is an orthogonal matrix, if K = R and ATA = I.
• A is a unitary matrix, if K = C and AHA = I.
• The QR factorization of A ∈ Kn×n is given by A = QR where Q ∈ Rn×n

is orthogonal and R ∈ R
n×n is upper triangular if K = R. If K = C, then

Q ∈ Cn×n is unitary and R ∈ Cn×n is upper triangular.

Lemma 2.3. A tridiagonal matrix T is D–symmetric for some D if and only if
|ti+1,i | = |ti,i+1 | for i = 1, . . . , n − 1. Every unreduced tridiagonal matrix is similar
to a D–symmetric matrix (for some D) by a diagonal similarity with positive main
diagonal entries.

D–symmetric tridiagonal matrices are, e.g., generated by the nonsymmetric Lanc-
zos process [82].

Hessenberg matrices play a fundamental role for the analysis of the standard
eigenvalue algorithms considered in this thesis. Hence, let us review some of their most
important properties. It is well-known that for any matrix A ∈ Rn×n an orthogonal
transformation matrix Q ∈ R

n×n can be computed such that QTAQ = H is of
Hessenberg form (see, e.g., [65, Section 7.4.3]). Such a Hessenberg decomposition is
not unique.

Theorem 2.4 (Implicit-Q-Theorem). Suppose Q = [q1, . . . , qn] and V = [v1, . . . ,
vn] are orthogonal matrices with the property that both QTAQ = H and V TAV = G
are upper Hessenberg matrices where A ∈ Rn×n. Let k denote the smallest positive
integer for which hk+1,k = 0, with the convention that k = n if H is unreduced. If
q1 = v1, then qi = ±vi and |hi,i−1| = |gi,i−1| for i = 2 : k. Moreover, if k < n, then
gk+1,k = 0.

Proof. See, e.g, [65, Theorem 7.4.2].
√

There is a useful connection between the Hessenberg reduction QTAQ = H and
the QR factorization of the Krylov matrix K(A,Q(:, 1), n).

Theorem 2.5. Suppose Q ∈ Rn×n is an orthogonal matrix and A ∈ Rn×n. Let
q1 = Qe1 be the first column of Q. Then QTAQ = H is an unreduced upper Hessenberg
matrix if and only if QTK(A, q1, n) = R is nonsingular and upper triangular.

Proof. See, e.g, [65, Theorem 7.4.3].
√

Thus, there is a correspondence between nonsingular Krylov matrices and orthog-
onal similarity reductions to unreduced upper Hessenberg form.

The last two results mentioned here concern unreduced upper Hessenberg matri-
ces. The left and right eigenvectors of unreduced upper Hessenberg matrices have the
following properties.

Theorem 2.6. Suppose H ∈ Rn×n is an unreduced upper Hessenberg matrix.
If Hs = λs with s ∈ Kn\{0} and HTu = λu with u ∈ Kn\{0}, then eTns 6= 0 and
eT1 u 6= 0.

13

Proof. See, e.g, [86, Lemma 2.1].
√

Moreover, unreduced Hessenberg matrices are nonderogatory, that is, each eigen-
value has unit geometric multiplicity.

Theorem 2.7. Suppose H ∈ Rn×n is an unreduced upper Hessenberg matrix. If
λ is an eigenvalue of H, then its geometric multiplicity is one.

Proof. See, e.g, [65, Theorem 7.4.4].
√

When there is a repeated eigenvalue, the theorem implies that H has less then n
linearly independent eigenvectors. If the eigenvectors of a matrix of order n are not
a basis for Rn, then the matrix is called defective or nonsimple. Hence, if H has a
repeated eigenvalue, it is a defective matrix. Unreduced Hessenberg matrices reveal
even more information about the underlying eigensystem. Parlett [109, 110] provides
an abundance of results for Hessenberg matrices.

For matrices of size 2n × 2n, we use the following types of matrices and matrix
factorization.

Definition 2.8. Let A ∈ R2n×2n, A =
[
A11 A12

A21 A22

]
where Aij ∈ Rn×n for i, j =

1, 2. Let v ∈ R2n.
• A is a J–Hessenberg matrix if A11, A21, A22 are upper triangular matrices

and A12 is an upper Hessenberg matrix, that is

A =


 @ @@

@ @


 .

• A is an unreduced J–Hessenberg matrix if A is a J–Hessenberg matrix, A−1
21

exists, and A12 is an unreduced upper Hessenberg matrix.
• A is an (upper) J–triangular matrix if A11, A12, A22 are upper triangular

matrices and A21 is a strict upper triangular matrix, that is,

A =


 @ @

...@ @


 .

• A is a lower J–triangular matrix if AT is an upper J–triangular matrix.
• A is a symplectic matrix if ATJA = J .
• A is a Hamiltonian matrix if AJ = (AJ)T .
• A is a trivial matrix, if A is symplectic and J–triangular.
• The SR factorization of A is given by A = SR where S ∈ R2n×2n is symplectic

and R ∈ R2n×2n is J–triangular.

Symplectic matrices can be viewed as orthogonal with respect to (·, ·)J . To em-
phasize this point of view, symplectic matrices are also called J–orthogonal.

The SR decomposition has been first introduced by Della-Dora [50, 51]. In con-
trast to the QR decomposition it does not always exist (see Theorem 2.10 below); but
the set of matrices which can be factorized in this way is dense in R

2n×2n [36, 53].
While the QR decomposition is usually considered for matrices in R and C, the SR
decomposition is usually not considered for complex matrices A ∈ C2n×2n. This is
due to the fact that the set of matrices A ∈ C2n×2n which have an SR decomposition
A = SR, where SHJS = J or SHJS = −J , is not dense in C2n×2n [36].

14

The following facts are easy to see.

Lemma 2.9. Let A,B ∈ R2n×2n, A =
[
A11 A12

A21 A22

]
where Aij ∈ Rn×n for i, j = 1, 2.

Let P be as in (2.2).
a) If A is a J–triangular matrix, then PAPT is an upper triangular matrix.
b) If A is a J–Hessenberg matrix or an unreduced J–Hessenberg matrix, then

PAPT is an upper Hessenberg matrix or an unreduced upper Hessenberg ma-
trix, respectively.

c) A is trivial (that is, symplectic and J–triangular) if and only if it has the
form

A =

[
C F
0 C−1

]
, (2.5)

where C = diag(c1, . . . , cn), F = diag(f1, . . . , fn).
d) If A is a regular J–triangular matrix, then A−1 is a J–triangular matrix.
e) If A and B are J–triangular matrices, then AB is a J–triangular matrix.
f) If A is a J–Hessenberg matrix and B a J–triangular matrix, then AB and

BA are J–Hessenberg matrices.

Almost every matrix A can be decomposed into a product of a symplectic matrix
S and a J–triangular matrix R.

Theorem 2.10. Let A ∈ R2n×2n be nonsingular. There exists a symplectic
matrix S and a J–triangular matrix R such that A = SR if and only if all leading
principal minors of even dimension of PATJAPT are nonzero where P as in (2.2).
The set of 2n× 2n SR decomposable matrices is dense in R2n×2n.

Proof. See [53, Theorem 11] or [36, Theorem 3.8] for a proof.
√

Bunse-Gerstner and Mehrmann [38] present an algorithm for computing the SR
decomposition of an arbitrary 2n× 2n matrix A (see also Section 2.2.2). First-order
componentwise and normwise perturbation bounds for the SR decomposition can be
found in [47, 29].

The SR decomposition has properties similar to the QR decomposition.

Corollary 2.11. Let A ∈ R2n×2n.
a) If AT = SR is an SR decomposition of AT , then there exists a symplectic

matrix W and a lower J–triangular matrix L such that A = LW .
b) Let

Ĵ =

[

1

1

��

]
, J̃ =

[
Ĵ

−Ĵ

]
.

If J̃AJ̃ = SR is an SR decomposition of J̃AJ̃ , then there exists a symplectic
matrix S̃ and a lower J–triangular matrix L̃ such that A = S̃L̃.

c) If AT = S̃L̃ as in b) exists, then there exists a symplectic matrix W̃ and an

upper J–triangular matrix R̃ such that A = R̃W̃ .
Proof. See [55, Proposition 2.8]

√

Let X = J̃AJ̃ . The SR decomposition of X exists if and only if the leading
principal minors of even dimension of PXTJXPT are nonzero. We have

PXTJXPT = P J̃ATJAJ̃PT

15

and

P J̃ = [−e2n,−e2n−2, . . . ,−e2, e2n−1, e2n−3, . . . , e1].

Let Y = ATJA =
[
Y11 Y12

Y21 Y22

]
∈ R2n×2n, where Yij ∈ Rn×n. Then the leading principal

minors of even dimension of PXTJXPT are given by

det

[
(Y11)2k+1:2n,2k+1:2n (Y12)2k+1:2n,2k+1:2n

(Y21)2k+1:2n,2k+1:2n (Y22)2k+1:2n,2k+1:2n

]
.

Hence, the leading principal minors of even dimension of P (J̃AJ̃)TJ(J̃AJ̃)PT are
just the trailing principal minors of even dimension of PATJAPT .

Statements similar to the above have been shown for the QR decomposition; see,
e.g., [33, Korollar 2.5.2].

Symplectic matrices may serve to transform a 2n× 2n matrix A to J–Hessenberg
form. The relation between this transformation to J–Hessenberg form and the SR
factorization is completely analogous to the relation between the unitary similarity
reduction to Hessenberg form and the QR factorization, as the following theorem
shows.

Theorem 2.12 (Implicit-S-Theorem). Let A ∈ R
2n×2n.

a) Let A = SR and A = S̃R̃ be SR factorizations of A. Then there exists a

trivial matrix D such that S̃ = SD−1 and R̃ = DR.
b) Suppose S ∈ R2n×2n is a symplectic matrix. Let s1 = Se1 be the first col-

umn of S. Then S−1AS is an unreduced J–Hessenberg matrix if and only if
S−1K(A, s1, 2n) = R is nonsingular and J–triangular.

Proof.
a) See, e.g., [38, Proposition 3.3].
b) See, e.g., [38, Theorem 3.4]. √

The essential uniqueness of the factorization K(A,Se1, n) = SR tells us that
the transforming matrix S for the similarity transformation S−1AS is essentially
uniquely determined by its first column. This Implicit-S-Theorem can serve as the
basis for the construction of an implicit SR algorithm for J–Hessenberg matrices,
just as the Implicit-Q-Theorem 2.4 provides a basis for the implicit QR algorithm
on upper Hessenberg matrices. In both cases uniqueness depends on the unreduced
character of the matrix. While the QR decomposition of a matrix always exists, the
SR factorization may not exist. Hence, the reduction to J–Hessenberg form may not
exist.

Unreduced J–Hessenberg matrices have properties similar to unreduced Hessen-
berg matrices.

Theorem 2.13. Suppose H ∈ R2n×2n is an unreduced J–Hessenberg matrix.
a) If Hs = λs with s ∈ K2n\{0} and HTu = λu with u ∈ K2n\{0}, then eTns 6= 0

and eT1 u 6= 0.
b) If λ is an eigenvalue of H, then its geometric multiplicity is one.

Proof. As HP = PHPT with P as in (2.2) is an unreduced upper Hessenberg
matrix, the theorem follows immediately from Theorem 2.6 and Theorem 2.7.

√

Remark 2.14. If Hx = λx, then (Jx)TH = −λ(Jx)T . Let y be the right eigen-
vector of H to −λ: Hy = −λy, then (Jy)TH = λ(Jy)T . From Theorem 2.13 it follows

16

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

real part

im
ag

in
ar

y
pa

rt

Eigenvalues of a random 20x20 Hamitltonian matrix

Fig. 2.1. Eigenvalues of a Hamiltonian matrix

that eT2ny 6= 0, hence the nth component of the left eigenvector of H corresponding to
λ is 6= 0.

Recall that a matrix H ∈ R2n×2n is called Hamiltonian if

(HJ)T = HJ (2.6)

while a matrix M ∈ R
2n×2n is called symplectic (or J–orthogonal) if

MJMT = J (2.7)

(or equivalently, MTJM = J) where J is as in (2.1). In other words, the set S of all
symplectic matrices is the set of all matrices that preserve the bilinear form defined
by J . Symplectic matrices are nonsingular (M−1 = JMTJT). It is well-known and
easy to show from this definition that S forms a multiplicative group (even more, S
is a Lie group), while the set H of all Hamiltonian matrices of order 2n forms a Lie
algebra. Moreover, since

(S−1HS)J = S−1HJS−T = S−1JTHTS−T = [(S−1HS)J]T ,

we see that symplectic similarity transformations preserve Hamiltonian structure.
There are relevant cases, however, where both H and S−1HS are Hamiltonian but S
is not a symplectic matrix [60].

The spectrum of a Hamiltonian matrix is symmetric with respect to the real and
the imaginary axis (see Figure 2.1). If λ is an eigenvalue of H with right eigenvector
x, then −λ is an eigenvalue of H with left eigenvector (Jx)T . Hence, as H is a real
matrix, the eigenvalues always occur in pairs {λ,−λ} if λ is real or purely imaginary,
or in quadruples {λ,−λ, λ,−λ} if λ is complex with nonzero real part.

In most applications, conditions are satisfied which guarantee the existence of an
n–dimensional invariant subspace corresponding to the eigenvalues of H in the open
left half plane. This is the subspace one usually wishes to compute. The numerical

17

computation of such an invariant subspace is typically carried out by an iterative
procedure like the QR algorithm which transforms H into Schur form, from which
the invariant subspace can be read off. See, e.g., [83, 84, 98]. For Hamiltonian matrices
a special generalized Schur form is known.

Theorem 2.15. Let H be a 2n× 2n real Hamiltonian matrix. Then there exists
a real orthogonal and symplectic matrix Z such that

ZTHZ =

[
T1 T2

0 −T T1

]

where T1 is an n× n real quasi upper triangular matrix, and T2 is symmetric, if and
only if every purely imaginary eigenvalue λ of H has even algebraic multiplicity, say
2k, and any basis Xk ∈ C2n×2k of the maximal invariant subspace for H corresponding
to λ satisfies that XH

k JXk is congruent to J2k,2k. Moreover, Z can be chosen such
that T1 has only eigenvalues in the open left half plane.

Proof. This results was first stated and proved [91]. A simpler proof has been
given in [92]. Weaker versions of the theorem assuming that H has no eigenvalues
on the imaginary axis can be found, e.g., in [108]. A constructive proof of a weaker
version can be found in [140], which was adapted from the construction given in [48].√

The first n columns of the right transformation matrix Z then span an invariant
subspace corresponding to the eigenvalues in the open left half plane. This subspace
is unique if no eigenvalues are on the imaginary axis. The construction of numer-
ical methods to compute these Schur forms using only symplectic and orthogonal
transformations is still an open problem. See Section 1 for a summary of proposed
methods.

A complete parameterization of all possible Hamiltonian Schur forms and corre-
sponding Lagrange invariant subspaces has been given in [60]. For a discussion of
other Hamiltonian canonical forms (e.g., symplectic Jordan or Kronecker canonical
forms) see, e.g., [102, 85, 2].

2.2. The SR algorithm and the reduction to J-Hessenberg form. Gen-
eral QR like methods, in which the QR decompositions are replaced by other decom-
positions have been studied by several authors, see, e.g., [50, 142]. The factorizations
have to satisfy several conditions to lead to a reasonable computational process. The
one that meets most of these requirements for the Hamiltonian eigenproblem is the
SR decomposition. This decomposition can serve as a basis for a QR like method, the
SR algorithm, which works for arbitrary matrices of even dimensions. It preserves
the Hamiltonian structure and, as will be seen, allows to develop fast and efficient
implementations.

The SR algorithm [50, 51, 38] is a member of the family of GR algorithms [142]
for calculating eigenvalues and invariant subspaces of matrices. The oldest member of
the family is Rutishauser’s LR algorithm [117, 118] and the most widely used is the
QR algorithm [59, 77, 143, 137, 65, 138]. The GR algorithm is an iterative procedure
that begins with a matrix A whose eigenvalues and invariant subspaces are sought. It
produces a sequence of similar matrices (Ai) that (hopefully) converge to a form ex-
posing the eigenvalues. The transforming matrices for the similarity transformations
Ai = G−1

i Ai−1Gi are obtained from a ”GR” decomposition pi(Ai−1) = GiRi in which
pi is a polynomial andRi is upper triangular. The degree of pi is called the multiplicity
of the ith step. If pi has degree 1, it is a single step. If the degree is 2, it is a double step,

18

and so on. Writing pi in factored form pi(A) = αi(A−µ(i)
1 I)(A−µ(i)

2 I) · · · (A−µ(i)
miI)

we call the roots µ
(i)
1 , µ

(i)
2 , . . . , µ

(i)
mi the shifts for the ith step. Each step of multiplicity

mi has mi shifts. A procedure for choosing the pi is called a shift strategy because

the choice of pi implies a certain choice of shifts µ
(i)
1 , . . . , µ

(i)
mi . In [142] it is shown

that every GR algorithm is a form of a nested subspace iteration in which a change of
coordinate system is made at each step. Convergence theorems for the GR algorithm
are proved. The theorems guarantee convergence only if the condition numbers of
the accumulated transforming matrices Ĝi = G1G2 · · ·Gi remain bounded through-
out the iterations. The global convergence theorem holds for shift strategies that
converge – unfortunately, no one has yet been able to devise a practical shift strategy
that is guaranteed to converge for all matrices and can be shown to converge rapidly.
The local convergence rate for the generalized Rayleigh-quotient strategy is typically
quadratic. For matrices having certain types of special structure, it is cubic. In the
generalized Rayleigh-quotient strategy pi is chosen to be the characteristic polynomial
of the trailing mi ×mi submatrix of Ai−1.

Algorithms in the GR family are usually implemented implicitly, as chasing al-
gorithms. The matrix whose eigenvalues are sought is first reduced to some upper
Hessenberg-like form. Then the chasing algorithm is set in motion by a similarity
transformation that introduces a bulge in the Hessenberg-like form near the upper
left-hand corner of the matrix. A sequence of similarity transformations then chases
the bulge downward and to the right, until the Hessenberg-like form is restored. Chas-
ing steps like this are repeated until (hopefully) the matrix converges to a form from
which the eigenvalues can be read off. A GR step consists of a similarity transforma-
tion X = G−1AG where p(A) = GR. One can show that G is more or less uniquely
determined by its first column (e.g., in the QR step this follows from the Implicit-Q-
Theorem). The implicit GR algorithm performs a different similarity transformation

X̃ = G̃−1AG̃, but G̃ is constructed in such a way that its first column is proportional
to the first column of G. It follows from the Implicit-G-Theorem that G and G̃ are
essentially the same, and consequently X and X̃ are essentially the same. Watkins
and Elsner analyze general GR chasing algorithms in [141].

2.2.1. Elementary Symplectic Matrices. During the course of the discussion
of the SR algorithm we will use the following elementary symplectic transformations:

• Symplectic Givens transformations Gk = G(k, c, s)

Gk =




Ik−1,k−1

c s
In−k,n−k

Ik−1,k−1

−s c
In−k,n−k



,

where c2 + s2 = 1, c, s ∈ R.
• Symplectic Householder transformations Hk = H(k, v)

Hk =




Ik−1,k−1

P

Ik−1,k−1

P


 ,

where P = In−k+1,n−k+1 − 2 vv
T

vT v , v ∈ Rn−k+1.

19

• Symplectic Gauss transformations Lk = L(k, c, d)

Lk =




Ik−2,k−2

c d
c d

In−k,n−k

Ik−2,k−2

c−1

c−1

In−k,n−k




,

where c, d ∈ R.
• Symplectic Gauss transformations type II L̃k = L̃(k, c, d)

L̃k =




Ik−1,k−1

c d
In−k,n−k

Ik−1,k−1

c−1

In−k,n−k



,

where c, d ∈ R.
The symplectic Givens and Householder transformations are orthogonal, while

the symplectic Gauss transformations are nonorthogonal. It is crucial that the simple
structure of these elementary symplectic transformations is exploited when computing
matrix products of the form GkA,AGk, HkA,AHk, LkA,ALk, L̃kA, and AL̃k. Note
that only rows k and n + k are affected by the premultiplication GkA, and columns
k and n + k by the postmultiplication AGk. Similar, pre- and postmultiplication by
Lk affects only the rows (resp., the columns) k − 1, k, n + k − 1 and n + k, while

pre- and postmultiplication by L̃k affects only the rows (resp., the columns) k and
n + k. Premultiplication by Hk affects only the rows k to n and n + k to 2n, while
postmultiplication affects the corresponding columns. Further, note that for the sym-
plectic Householder transformations we have, e.g., PAk:n,1:n = Ak:n,1:n + vwT where
w = βATk:n,1:nv, β = −2/vTv. Thus a symplectic Householder update involves only
matrix-vector multiplications followed by an outer product update. Failure to recog-
nize these points and to treat the elementary symplectic transformations as general
matrices increases work by an order of magnitude. The updates never entail the ex-
plicit formation of the transformation matrix, only the relevant parameters are com-
puted. Algorithms to compute these parameters of the abovementioned transforma-
tions are given here for the sake of completeness (see Table 2.1 – 2.4 (in Matlab2-like
notation), see also, e.g., [108, 39]).

The Gauss transformations are computed such that among all possible transfor-
mations of that form, the one with the minimal condition number is chosen. The
following lemma is easy to see.

Lemma 2.16. Let M ∈ R2n×2n and j, k ∈ N, 1 ≤ j ≤ 2n, 1 ≤ k ≤ n given
indices.

a) Let [c, s] = givens(M(k, j),M(k + n, j)) and Gk = G(k, c, s), then

(GkM)k+n,j = 0.

2Matlab is a trademark of The MathWorks, Inc.

20

Further Gk is symplectic and orthogonal.
b) Let [c, s] = givens(M(j, k + n),M(j, k)) and Gk = Gk(k, c, s), then

(MGk)j,k = 0.

Further Gk is symplectic and orthogonal.
c) Let v = house(M(k : n, j)) and Hk = H(k, v), then

(HkM)k+1:n,j = 0.

Further Hk is symplectic and orthogonal.
d) Let v = house(M(j, k + n : 2n)) and Hk = H(k, v), then

(MHk)j,k+1+n:2n = 0.

Further Hk is symplectic and orthogonal.
e) Let k > 1 and M(k − 1 + n, j) = 0 only if M(k, j) = 0. Let Lk = L(k, c, d)

where [c, d, κ] = gauss1(M(k, j),M(k − 1 + n, j)), then

(LkM)k,j = 0.

Further Lk is symplectic with the condition number κ. κ is minimal, that is,
there is no corresponding elimination matrix with smaller condition number.

f) Let k > 1 and M(j, k−1) = 0 only if M(j, k+n) = 0, [c, d, κ] = gauss1(M(j,
k + n),M(j, k − 1)) and Lk = L(k, c−1, d), then

(MLk)j,k+n = 0.

Further Lk is symplectic with condition number κ. κ is minimal, that is,
there is no corresponding symplectic elimination matrix with smaller condition
number.

g) Let M(j, k) = 0 only if M(j, k+ n) = 0, [c, d, κ] = gauss2(M(j, k+ n),M(j,

k)) and L̃k = L̃(k, c−1, d), then

(ML̃k)j,k+n = 0.

Further L̃k is symplectic with condition number κ. κ is minimal, that is,
there is no corresponding symplectic elimination matrix with smaller condition
number.

Remark 2.17. Any orthogonal symplectic matrix Q can be expressed as the
product of symplectic Givens and symplectic Householder transformations, see [108,
Corollary 2.2].

Remark 2.18. In some of the algorithms discussed later on, the symplectic
Householder transformation can be replaced by a symplectic Givens transformation of
type II G̃k = G̃(k, c, s) which is defined as

G̃k =




Ik−1

c s
−s c

In−k−2

Ik−1

c s
−s c

In−k−2




,

21

Algorithm: Generate Symplectic Givens Matrix

Given scalars a and b compute c and s such that c2 + s2 = 1 and

[
c s
−s c

] [
a
b

]
=

[
r
0

]
.

function [c, s] = givens(a, b)
if b = 0
then c = 1, s = 0
else if |b| > |a|

then t = a/b
s = −1/

√
1 + t2

c = st
else t = b/a

c = 1/
√

1 + t2

s = ct
end

end
Table 2.1

Symplectic Givens Matrix

Algorithm: Generate Symplectic Householder Matrix

Given a column vector x ∈ Rn compute v such that v(1) = 1,
and y(2 : n) = 0 for y = (I − 2vvT /(vT v))x.

function v = house(x)
m = ‖x‖2
v = x
if m 6= 0
then if x(1) ≥ 0

then b = x(1) +m
else b = x(1)−m
end
v = (1/b)v

end
v(1) = 1

Table 2.2
Symplectic Householder Matrix

where c2+s2 = 1, c, s ∈ R. Usually, c and s are computed as in the standard symplectic
Givens transformation.

2.2.2. SR Algorithm. The SR algorithm is based on the SR decomposition.
Recall that the SR factorization of a real 2n×2n matrix A is given by A = SR where
S ∈ R2n×2n is symplectic and R ∈ R2n×2n is J–triangular. Almost every matrix A
can be decomposed into such a product, see Theorem 2.10.

22

Algorithm: Generate Symplectic Gauss Matrix

Given scalars a and b, where b = 0 only if a = 0, compute c and d such that




c d
c d

c−1

c−1







⋆
a
b
0


 =




⋆
0
r
0


 .

Further the condition number κ of the elimination matrix is computed.

function [c, d, κ] = gauss1(a, b)
if a = 0
then t = 0
else t = −a/b
end
c = 1/ 4

√
1 + t2

d = ct
κ =
√

1 + t2 + |t|
Table 2.3

Symplectic Gauss Matrix

Algorithm: Generate Symplectic Gauss Matrix Type II

Given scalars a and b, where b = 0 only if a = 0, compute c and d such that

[
c d

c−1

] [
a
b

]
=

[
0
r

]
.

Further the condition number κ of the elimination matrix is computed.

function [c, d, κ] = gauss2(a, b)
if a = 0
then t = 0
else t = −a/b
end
c = 1/ 4

√
1 + t2

d = ct
κ =
√

1 + t2 + |t|
Table 2.4

Symplectic Gauss Matrix Type II

If the SR decomposition exists, then other SR decompositions of A can be built
from it by passing trivial factors (2.5) back and forth between S and R. That is, if D is

a trivial matrix, S̃ = SD−1 and R̃ = DR, then A = S̃R̃ is another SR decomposition
of A (see Theorem 2.12). If A is nonsingular, then this is the only way to create other
SR decompositions. In other words, the SR decomposition is unique up to trivial
factors.

23

In Section 2.1 we have already seen that the relation between the symplectic
transformation of a 2n× 2n matrix to J–Hessenberg form and the SR decomposition
is completely analogous to the relation between the unitary reduction to upper Hes-
senberg form and the QR decomposition, see Theorem 2.12. The SR decomposition
A = SR and, therefore, also the reduction to J–Hessenberg form can, in general,
not be performed with a symplectic orthogonal matrix S. A necessary and sufficient
condition for the existence of such an orthogonal SR decomposition is that A is of
the form

A =

[
X Y
−Y X

]
R

where X,Y ∈ Rn×n, and R is a J–triangular matrix [36]. Hence, for the computation
of the SR decomposition (or the reduction to J–Hessenberg form) one has to employ
nonorthogonal symplectic transformations.

Bunse-Gerstner and Mehrmann [38] present an algorithm for computing the SR
decomposition of an arbitrary 2n× 2n matrix A. The algorithm uses the symplectic
Givens transformations Gk, the symplectic Householder transformations Hk, and the
symplectic Gauss transformation Lk introduced in Section 2.2.1. Symplectic elimina-
tion matrices Sj are determined such that R = S2n · · ·S2S1A is of J–triangular form.
Then A = SR with S = S−1

1 S−1
2 · · ·S−1

2n is an SR decomposition of A. The basic idea
of the algorithm can be summarized as follows:

let S = I, R = A
for j = 1 to n

determine a symplectic matrix S2j−1 such that the jth column
of S2j−1R is of the desired form

set S = SS−1
2j−1, R = S2j−1R

determine a symplectic matrix S2j such that the (n+ j)th column
of S2jR is of the desired form

set S = SS−1
2j , R = S2jR

The entries n+ i to 2n of the ith column and the entries n+ i+1 to 2n of the (n+ i)th
column are eliminated using symplectic Givens matrices. The entries i+1 to n of the
ith column and the entries i + 2 to n of the (n + i)th column are eliminated using
symplectic Householder matrices. The entry (n + i + 1) of the (n + i)th column is
eliminated using a symplectic Gauss matrix. This algorithm for computing the SR
decomposition of an arbitrary matrix (as given in [38]) can be summarized as given
in Table 2.5 (in Matlab.

If at any stage j ∈ {1, . . . , n − 1} the algorithms ends because of the stopping
condition, then the 2jth leading principal minor of PATJAPT is zero and A has no
SR decomposition (see Theorem 2.10).

All but (n−1) transformations are orthogonal, which are known to be numerically
stable transformations. Applying symplectic Gauss transformations for elimination,
problems can arise not only because the algorithm may break down but also in those
cases where we are near to such a breakdown. If we eliminate the jth nonzero entry
of a vector x with a symplectic Gauss matrix Lj and xn−j−1 is very small relative to
xj , then the condition number κ2(Lj), here essentially given by

||Lj||2 = (1 + v2)1/2 + |v|,

where v = −xj/xn−j−1, will be very large. A transformation with Lj will then cause
dramatic growth of the rounding errors in the result. Here we will always choose

24

Algorithm: SR Decomposition

Given a 2n × 2n matrix A compute a 2n × 2n symplectic matrix S, and a
2n× 2n J–triangular matrix R such that A = SR.

S = I2n,2n

for j = 1 : n
for k = n : −1 : j

compute Gk such that (GkA)k+n,j = 0
A = GkA
S = SGTk

end
if j < n
then compute Hj such that (HjA)j+1:n,j = 0.

A = HjA
S = SHT

j

for k = n : −1 : j + 1
compute Gk such that (GkA)k+n,j+n = 0.
A = GkA
S = SGTk

end
if j < n− 1
then compute Hj+1 such that (Hj+1A)j+2:n,j+n = 0.

A = Hj+1A
S = SHT

j+1

end
if Aj+n,j+n = 0 and Aj+1,j+n 6= 0
then stop, SR decomposition does not exist
end
compute Lj+1 such that (Lj+1A)j+1,j+n = 0.
A = Lj+1A
S = SL−1

j+1

end
end

Table 2.5
SR Decomposition

the symplectic Gauss matrix among all possible ones with optimal (smallest possible)
condition number.

Using the SR decomposition the SR algorithm for an arbitrary 2n × 2n matrix
A is given as

let A0 = A
for k = 1, 2, . . .

choose a shift polynomial pk
compute the SR decomposition pk(Ak−1) = SkRk
compute Ak = S−1

k Ak−1Sk
The SR decomposition of pk(Ak−1) might not exist. As the set of the matrices, for
which the SR decomposition does not exist, is of measure zero (Theorem 2.10), the

25

polynomial pk is discarded and an implicit SR step with a random shift is performed as
proposed in [38]. For an actual implementation this might be realized by checking the
condition number of the Gauss transformation Lk needed in each step and performing
an exceptional step if it exceeds a given tolerance.

Remark 2.19. How does a small perturbation of A influence the SR step? Will
the SR step on A + E, where E is an error matrix with small norm, yield a trans-
formed matrix S(A + E)S−1 close to SAS−1? How does finite-precision arithmetic
influence the SR step? As in the SR algorithm nonorthogonal symplectic similarity
transformations are employed, a backward error analysis would yield

S(A+ E)S−1 = SAS−1 +G

where ||G||2 = ||SES−1||2 ≤ κ2(S)||E||2. The condition number κ2(S) can be arbi-
trarily large. The QR algorithm does not have this problem. As in the QR algorithm
only unitary similarity transformation are employed, an error analysis yields

Q(A+ E)QT = QAQT + F

where ||F ||2 = ||QEQT ||2 = ||E||2. First-order componentwise and normwise pertur-
bation bounds for the SR decomposition can be found in [47, 29].

The shift polynomials pk are usually chosen according to the generalized Rayleigh-
quotient strategy modified for the situation given here, that is, pk is chosen to be the
characteristic polynomial of the trailing mi × mi submatrix of PAi−1P

T where P
as in (2.2). A convergence proof can be deduced from the corresponding proof of
convergence for general GR algorithms in [142].

Theorem 2.20. Let A0 ∈ R2n×2n, and let p be a polynomial. Let λ1, . . . , λ2n

denote the eigenvalues of A0, ordered so that |p(λ1)| ≥ |p(λ2)| ≥ . . . ≥ |p(λ2n)|.
Suppose k is a positive integer less than 2n such that |p(λk)| ≥ |p(λk+1)|, let ρ =
|p(λk+1)|/|p(λk)|, and let (pi) be a sequence of polynomials such that pi → p and
pi(λj) 6= 0 for j = 1, . . . , k and all i. Let U be the invariant subspace of PA0P

T

associated with λk+1, . . . , λ2n, and suppose span{e1, . . . , ek}∩U = {0} (P as in (2.2)).
Let (Ai) be the sequence of iterates of the SR algorithm using these pi, starting from
A0. If there exists a constant κ̂ such that the cumulative transformation matrices
Ŝi = S1S2 · · ·Si all satisfy κ2(Ŝi) ≤ κ̂, then (PAiP

T) tends to block upper triangular
form, in the following sense. Write

PAiP
T =

[
X

(i)
11 X

(i)
12

X
(i)
21 X

(i)
22

]
,

where X
(i)
11 ∈ Rk×k. Then for every ρ̂ satisfying ρ < ρ̂ < 1 there exists a constant C

such that ||X(i)
21 ||2 ≤ Cρ̂ i for all i.

Proof. See Theorem 6.2 in [142].
√

The condition pi(λj) 6= 0 for j = 1, . . . , k may occasionally be violated. If pi(λj) =
0, then pi(Ai) is singular. It can be shown that in this case, the eigenvalue λj can be
deflated from the problem after the ith iteration. The theorem further implies that the

eigenvalues of X
(i)
11 and X

(i)
22 converge to λ1, . . . , λk and λk+1, . . . , λ2n, respectively.

Remark 2.21. The condition span{e1, . . . , ek} ∩ U = {0} is automatically
satisfied for all unreduced J–Hessenberg matrices. Suppose x ∈ span{e1, . . . , ek} is

26

nonzero. Let its last nonzero component be xr, r ≤ k. If A0 has unreduced J–
Hessenberg form, then PA0P

T is an unreduced upper Hessenberg matrix. The last
nonzero component of PA0P

Tx is its (r+1)st, the last nonzero component of PA2
0P

Tx
is its (r+ 2)nd, and so on. It follows that x,A0x,A

2
0x, . . . , A

m
0 x are linearly indepen-

dent, where m = 2n − k. Therefore the smallest invariant subspace of PA0P
T that

contains x has dimension at least m+ 1. Since U is invariant under PA0P
T and has

dimension m, it follows that x 6∈ U . Thus span{e1, . . . , ek} ∩ U = {0}.
The following theorem indicates quadratic and cubic converge under certain cir-

cumstances.

Theorem 2.22. Let A0 ∈ R2n×2n have distinct eigenvalues. Let (Ai) be the se-
quence generated by the SR algorithm starting from A0, using the generalized Rayleigh-
quotient shift strategy with polynomials of degree 2m. Suppose there is a constant κ̂
such that κ2(Ŝi) ≤ κ̂ for all i, and the PAiP

T converge to block triangular form, in
the sense described in Theorem 2.20, with k = 2n − 2m. Then the convergence is
quadratic. Moreover, suppose that each of the iterates

PAiP
T =

[
X

(i)
11 X

(i)
12

X
(i)
21 X

(i)
22

]

satisfies ||X(i)
12 || = ||X(i)

21 || for some fixed norm || · ||. Then the iterates converge
cubically if they converge.

Proof. See Theorems 6.3 and 6.5 in [142].
√

Hamiltonian matrices satisfy the condition ||X(i)
12 || = ||X

(i)
21 ||, thus the convergence

rate of the Hamiltonian SR algorithm is typically cubic [142, Example 6.7].
The most glaring shortcoming associated with the above algorithm is that each

step requires a full SR decomposition costing O((2n)3) flops. Fortunately, the amount
of work per iteration can be reduced by an order of magnitude if we first reduce the
full matrix A to J–Hessenberg form as the SR algorithm preserves the J–Hessenberg
form: If pk(Ak−1) is nonsingular and pk(Ak−1) = SkRk, then Rk is nonsingular as Sk
is symplectic. Therefore,

Ak = S−1
k Ak−1Sk = Rkpk(Ak−1)

−1Ak−1pk(Ak−1)R
−1
k = RkAk−1R

−1
k

because pk(Ak−1) and Ak−1 commute. If Ak−1 is of J–Hessenberg form, then so is
Ak as Ak is a product of a J–Hessenberg matrix (Ak−1) and J-triangular matrices
(Rk, R

−1
k). For singular pk(Ak−1) one has to check the special form of Sk to see that

Ak is of desired form if Ak−1 is of J–Hessenberg form. In this case the problem can
be split into two problems of smaller dimensions: If rank(pk(Ak−1)) = 2n− 2ν = 2j,
then the problem splits into a problem of size 2j × 2j with J–Hessenberg form and a
problem of size 2ν × 2ν whose eigenvalues are exactly the shifts that are eigenvalues
of Ak−1 (that is, that are eigenvalues of A), see, e.g., [141, Section 4]. The SR
decomposition of a J–Hessenberg matrix requires only O((2n)2) flops to calculate as
compared to O((2n)3) flops for the SR decomposition of a full 2n×2n matrix. Hence,
as the initial reduction to J–Hessenberg form is an O((2n)3) process, a reasonable
implementation of the SR algorithm should first reduce A to J–Hessenberg form.

Because of the essential uniqueness of the reduction to J–Hessenberg form, the
SR algorithm can be performed without explicitly computing the decompositions
pk(Ak−1) = SkRk. In complete analogy to the GR algorithm, we can perform the SR
step implicitly:

27

compute a symplectic matrix S̃k such that S̃−1
k pk(Ak−1)e1 = αe1

for some α ∈ R

set Âk = S̃−1
k Ak−1S̃k

compute a symplectic matrix Ŝk such that Ŝ−1
k ÂkŜk is of

J–Hessenberg form

The resulting J–Hessenberg matrix Ŝ−1
k ÂkŜk is essentially the same as S−1

k Ak−1Sk,

since Ŝk = DSk for some trivial matrix D (2.5).

Applying the first transformation S̃k to the J–Hessenberg matrix Ak−1 yields a
matrix with almost J–Hessenberg form having a small bulge, that is there will be some
additional entries in the upper left hand corner of each n × n block of S̃−1

k Ak−1S̃k.

The remaining implicit transformations (that is, the computation of Ŝk) perform a
bulge chasing sweep down the diagonal to restore the J–Hessenberg form.

Bunse-Gerstner and Mehrmann present in [38] an algorithm for reducing an arbi-

trary matrix to J–Hessenberg form. Depending on the size of the bulge in S̃−1
k Ak−1S̃k,

the algorithm can be greatly simplified to reduce S̃−1
k Ak−1S̃k to J–Hessenberg form.

The algorithm uses the symplectic Givens transformations Gk, the symplectic House-
holder transformations Hk, and the symplectic Gauss transformations Lk introduced
in Section 2.2.1. The basic idea of the algorithm can be summarized as follows:

for j = 1 to n
determine a symplectic matrix S such that the jth column of

S−1A is of the desired form
set A = S−1AS
determine a symplectic matrix S such that the (n+ j)th column

of S−1A is of the desired form
set A = S−1AS

In order to compute a symplectic matrix S such that the jth column of S−1A is of
the desired form the following actions are taken. The entries n + j to 2n of the jth
column are eliminated using symplectic Givens matrices. The entries j+2 to n of the
jth column are eliminated using symplectic Householder matrices. The entry (j + 1)
of the jth column is eliminated using a symplectic Gauss matrix. Similar, in order
to compute a symplectic matrix S such that the (n + j)th column of S−1A is of the
desired form the following actions are taken. The entries n+ j to 2n of the (n+ j)th
column are eliminated using symplectic Givens matrices. The entries j + 2 to n of
the (n + j)th column are eliminated using symplectic Householder matrices. This
algorithm for computing the reduction of an arbitrary matrix to J–Hessenberg form
(as given in [38]) can be summarized as given in Table 2.6 (in Matlab-like notation).
As the reduction is computed columnwise, starting with the first column, the first
column of the matrix S will be a multiple of the first unit vector, that is Se1 = αe1.

For some later discussions we will need a reduction to J-Hessenberg such that
the last row of the reduction matrix S is a multiple of the 2nth unit vector, that is
eT2nS = αeT2n. This has been discussed in [132]. The idea can be achieved when the
matrix A is reduced rowwise beginning with the last row

for j = 1 to n
determine a symplectic matrix S such that the (2n− j + 1)th

row of AS is of the desired form
set A = S−1AS
determine a symplectic matrix S such that the jth row

of AS is of the desired form

28

Algorithm: Reduction to J–Hessenberg Form

Given a 2n × 2n arbitrary matrix A compute its reduction to J–Hessenberg
form. A will be overwritten by its J–Hessenberg form.

for j = 1 : n− 1
for k = n : −1 : j + 1

compute Gk such that (GkA)k+n,j = 0
A = GkAG

T
k

end
if j < n− 1
then compute Hj such that (HjA)j+2:n,j = 0

A = HjAH
T
j

end
if Aj+1,j 6= 0 and An+j,n+j = 0
then stop, reduction does not exist
end
compute Lj+1 such that (Lj+1A)j+1,j = 0
A = Lj+1AL

−1
j+1

for k = n : −1 : j + 1
compute Gk such that (GkA)n+k,n+j = 0
A = GkAG

T
k

end
if j < n− 1
then compute Hj such that (HjA)j+2:n,n+j = 0

A = HjAH
T
j

end
end

Table 2.6
Reduction to J–Hessenberg Form

set A = S−1AS

In order to compute a symplectic matrix S such that the (2n − j + 1)th row of AS
is of the desired form the following actions are taken. The entries 1 to n − j of the
(2n− j+1)th row are eliminated using symplectic Givens matrices. The entries n+1
to 2n− j + 1 of the (2n− j + 1)th row are eliminated using symplectic Householder
matrices. The entry (2n− j + 1, 2n− j) of the (2n− j + 1)th row is eliminated using
a symplectic Gauss matrix. Similar, in order to compute a symplectic matrix S such
that the (n− j+1)th row of AS is of the desired form the following actions are taken.
The entries 1 to n− j of the (n− j+1)th row are eliminated using symplectic Givens
matrices. The entries n + 1 to 2n − j − 1 of the (n − j + 1)th row are eliminated
using symplectic Householder matrices. This algorithm for computing the reduction
of an arbitrary matrix to J–Hessenberg form (as given in [132]) can be summarized as
given in Table 2.7 (in Matlab-like notation). As the reduction is computed rowwise,
starting with the last row, we have eT2nS = αeT2n. Please note, that, e.g., the symplectic
Householder matrix H defined before is constructed such that it transforms a given
vector x to a multiple of the first unit vector. In the rowwise reduction as described
here, we will need a symplectic Householder transformation which transforms a given

29

row vector yT to a multiple of eT2n. Likewise, the symplectic Gauss elimination has to
be defined in a slightly different way. In an abuse of notation, we are using the same
notation H and L in the description of the rowwise algorithm as in the columnwise
algorithm!

Algorithm: Rowwise reduction to J–Hessenberg Form

Given a 2n × 2n arbitrary matrix A compute its reduction to J–Hessenberg
form. A will be overwritten by its J–Hessenberg form.

for j = 1 : n− 1
for k = 1 : n− j

compute Gk such that (AGk)2n−j+1,k = 0
A = GTkAGk

end
if j < n− 1
then compute Hj such that (AHj)2n−j+1,n+1:2n−j+1 = 0

A = HT
j AHj

end
if A2n−j+1,2n−j 6= 0 and A2n−j+1,n−j+1 = 0
then stop, reduction does not exist
end
compute Lj+1 such that (ALj+1)2n−j+1,2n−j = 0
A = L−1

j+1ALj+1

for k = 1 : n− j
compute Gk such that (AGk)n−j+1,k = 0
A = GTkAGk

end
if j < n− 1
then compute Hj such that (AHj)n−j+1,n+1:2n−j−1 = 0

A = HT
j AHj

end
end

Table 2.7
Rowwise reduction to J–Hessenberg Form

Remark 2.23. As in the SR algorithm only symplectic similarity transformations
are employed, it preserves the Hamiltonian structure. That is, if A is Hamiltonian,
then all iterates Ai of the SR algorithm are Hamiltonian.

2.2.3. HR Algorithm. The HR algorithm [32, 35] is just like the SR algo-
rithm a member of the family of GR algorithms [142] for calculating eigenvalues
and invariant subspaces of matrices. Unlike the SR algorithm, the HR algorithm
deals with matrices in Rn×n. Before we briefly introduce the HR algorithm, we re-
call some definitions from Definition 2.2. A signature matrix is a diagonal matrix
D = diag(d1, . . . , dn) such that each di ∈ {1,−1}. Given a signature matrix D, we
say that a matrix A ∈ Rn×n is D–symmetric if (DA)T = DA. Moreover, from Lemma
2.3 we know that a tridiagonal matrix T is D–symmetric for some D if and only if
|ti+1,i| = |ti,i+1| for i = 1, . . . , n− 1. Every unreduced tridiagonal matrix is similar to

30

a D–symmetric matrix (for some D) by a diagonal similarity with positive main diag-
onal entries. D–symmetric tridiagonal matrices are generated by the nonsymmetric
Lanczos process [82].

Almost every A ∈ Rn×n has an HR decomposition

A = HU,

in which U is upper triangular, and H satisfies the hyperbolic property

HTDH = D̂,

where D̂ is another signature matrix [35]. For nonsingular A the HR decomposition
is unique up to a signature matrix. We can make it unique by insisting that the upper
triangular factor U satisfies uii > 0, i = 1, . . . , n. The HR algorithm [32, 35] is an
iterative process based on the HR decomposition. Choose a spectral transformation
function p for which p(A) is nonsingular, and form the HR decomposition of p(A), if
possible:

p(A) = HU.

Then use H to perform a similarity transformation on A to get the next iterate:

Â = H−1AH.

The HR algorithm has the following structure preservation property: If A is D–
symmetric and HTDH = D̂, then Â is D̂–symmetric. If A is also tridiagonal, then
so is Â. For a detailed discussion see [35, 32]. See also [34, 93].

At the end of Section 4.1, we will see that there is a close connection between
the SR algorithm on 2n× 2n Hamiltonian matrices and the HR algorithm on n× n
tridiagonal D-symmetric matrices.

2.3. Lanczos Algorithm. In 1950, Lanczos [82] proposed a method for the
successive reduction of a given, in general non-Hermitian, n×nmatrix A to tridiagonal
form. The Lanczos process generates a sequence Tm,m,m = 1, 2, ..., of m×m matrices
which, in a certain sense, approximate A. Furthermore, in exact arithmetic and if no
breakdown occurs, the Lanczos method terminates after at most l ≤ n steps with T l,l

a tridiagonal matrix that represents the restriction of A or AT to an A–invariant or
AT –invariant subspace of Cn, respectively. In particular, all the eigenvalues of T l,l

are also eigenvalues of A and, in addition, the method produces basis vectors for the
A–invariant or AT –invariant subspace found.

The nonsymmetric Lanczos tridiagonalization is essentially the Gram-Schmidt
bi-orthogonalization method for generating bi-orthogonal bases for a pair of Krylov
subspaces

{q, Aq,A2q, A3q, ...} and {vT , vTA, vTA2, vTA3, ...}

(v, q ∈ Rn arbitrary). Applying the two-sided Gram-Schmidt process to the vectors
{Akq}k≥0 and {vTAk}k≥0, one arrives at a three term recurrence relation which, when
k = n, represents a similarity transformation of the matrix A to tridiagonal form. The
three term recurrence relation produces a sequence of vectors which can be viewed as
forming the rows and columns, respectively, of rectangular matrices, V n,k and Qn,k,
such that after n steps, V n,n and Qn,n are n× n matrices with Qn,n = (V n,n)−1 and

31

V n,nAQn,n is tridiagonal. At each step, an orthogonalization is performed, which
requires a division by the inner product of (multiples of) the vectors produced at the
previous step. Thus the algorithm suffers from breakdown and instability if any of
these inner products is zero or nearly zero.

Let us be more precise. Given v1, q1 ∈ Rn and a nonsymmetric matrix A ∈
Rn×n, the standard nonsymmetric Lanczos algorithm produces matrices V n,k =
[v1, . . . , vk] ∈ R

n×k and Qn,k = [q1, . . . , qk] ∈ R
n×k which satisfy the recursive identi-

ties

AV n,k = V n,kT k,k + βk+1vk+1e
T
k , (2.8)

ATQn,k = Qn,k(T k,k)T + γk+1qk+1e
T
k , (2.9)

where

T k,k =




α1 γ2

β2
. . .

. . .

. . .
. . . γk
βk αk




is a truncated reduction of A. Generally, the elements βj and γj are chosen so that
|βj | = |γj | and (Qn,k)TV n,k = Ik,k (bi-orthogonality). One pleasing result of this
bi-orthogonality condition is that multiplying (2.8) on the left by (Qn,k)T yields the
relationship (Qn,k)TAV n,k = T k,k.

Encountering a zero βk+1vk+1 or γk+1qk+1 in the Lanczos iteration is a wel-
come event in that it signals the computation of an exact invariant subspace. If
βk+1vk+1 = 0, then the iteration terminates and span{v1, . . . , vk} is an invariant sub-
space for A. If γk+1qk+1 = 0, then the iteration also terminates and span{q1, . . . , qk}
is an invariant subspace for AT . If neither condition is true and qTk+1vk+1 = 0, then
the tridiagonalization process ends without any invariant subspace information. This
is called a serious breakdown. However, an exact zero or even a small βk+1vk+1

or γk+1qk+1 is a rarity in practice. Nevertheless, the extremal eigenvalues of T k,k

turn out to be surprisingly good approximations to A’s extremal eigenvalues. Hence,
the successive tridiagonalization by the Lanczos algorithm combined with a suitable
method for computing the eigenvalues of the resulting tridiagonal matrices is an ap-
propriate iterative method for solving large and sparse eigenproblem, if only some of
the eigenvalues are sought. As the resulting tridiagonal matrices are sign-symmetric,
the HR or the LR algorithm are appropriate QR like methods for computing the
eigenvalues and invariant subspaces, as they preserve the special structure.

Yet, in practice, there are a number of difficulties associated with the Lanczos
algorithm. At each step of the nonsymmetric Lanczos tridiagonalization, an orthog-
onalization is performed, which requires a division by the inner product of (multiples
of) the vectors produced at the previous step. Thus the algorithm suffers from break-
down and instability if any of these inner products is zero or close to zero. It is known
[71] that vectors q1 and v1 exist so that the Lanczos process with these as starting
vectors does not encounter breakdown. However, determining these vectors requires
knowledge of the minimal polynomial of A. Further, there are no theoretical results
showing that v1 and q1 can be chosen such that small inner products can be avoided.
Thus, no algorithm for successfully choosing v1 and q1 at the start of the computation
yet exists.

32

In theory, the three-term recurrences in (2.8) and (2.9) are sufficient to guaran-
tee (Qn,k)TV n,k = Ik,k. It is known [106] that bi-orthogonality will in fact be lost
when at least one of the eigenvalues of T k,k converges to an eigenvalue of A. In
order to overcome this problem, re-bi-orthogonalization of the vectors qj and vj is
necessary. Different strategies have been proposed for this, e.g., complete or selective
re-bi-orthogonalization. For a more detailed discussion on the various aspects of the
difficulties of the Lanczos method in the context of computing some eigenvalues of
large and sparse matrices see, e.g., [120] and the references therein.

It is possible to modify the Lanczos process so that it skips over exact breakdowns.
A complete treatment of the modified Lanczos algorithm and its intimate connection
with orthogonal polynomials and Padé approximation was presented by Gutknecht
[69, 70]. Taylor [133] and Parlett, Taylor, and Liu [112] were the first to propose
a look-ahead Lanczos algorithm that skips over breakdowns and near-breakdowns.
The price paid is that the resulting matrix is no longer tridiagonal, but has a small
bulge in the tridiagonal form to mark each occurrence of a (near) breakdown. Freund,
Gutknecht, and Nachtigal presented in [63] a look-ahead Lanczos code that can handle
look-ahead steps of any length.

A different approach to deal with the inherent difficulties of the Lanczos pro-
cess is to modify the starting vectors by an implicitly restarted Lanczos process (see
the fundamental work in [46, 126]; for the nonsymmetric eigenproblem the implic-
itly restarted Arnoldi method has been implemented very successfully, see [90]). The
problems are addressed by fixing the number of steps in the Lanczos process at a
prescribed value k which is dependent on the required number of approximate eigen-
values. J–orthogonality of the k Lanczos vectors is secured by re–J–orthogonalizing
these vectors when necessary. The purpose of the implicit restart is to determine
initial vectors such that the associated residual vectors are tiny. Given that V n,k

and Qn,k from (2.8) and (2.9) are known, an implicit Lanczos restart computes the
Lanczos factorization

AṼ n,k = Ṽ n,kT̃ k,k + r̃ke
T
k , (2.10)

AT Q̃n,k = Q̃n,k(T̃ k,k)T + q̃ke
T
k , (2.11)

which corresponds to the starting vectors

ṽ1 = ρp(A− µI)v1, q̃1 = ρq(A
T − µI)q1, (2.12)

without explicitly restarting the Lanczos process with the vectors in (2.12). For a
detailed derivation see [66] and the related work in [46, 126].

For nonsymmetric problems, convergence of Krylov projection methods has been
studied extensively. Saad [119] developed a bound for matrices with simple eigenval-
ues for the gap between a single eigenvector and the Krylov subspace. This result
was generalized in [72] to include defective matrices, but the bounds explicitly involve
the Jordan canonical form and derivatives of approximating polynomials. Simoncini
[124] analyses convergence of a block Arnoldi method for defective matrices using
pseudo-spectra. Lehoucq [88] relates the implicitly restarted Arnoldi method to sub-
space iteration to analyze convergence to an invariant subspace. Calvetti, Reichel and
Sorensen [46] introduce concepts from potential theory to analyse the convergence in
the implicitly restarted Lanczos algorithm to a single eigenvector for Hermitian ma-
trices. In the nonsymmetric case, the possibility of nonnormality complicates the
analysis considerable. The possibility of derogatory matrices my even render certain

33

invariant subspaces unreachable. These concepts are introduced by Beatti, Embree
and Rossi [11]. They employ various idea from functional analysis, pseudo-spectra
and potential theory. Their analysis focuses on convergence in gap of a (restarted)
Krylov space to a desired invariant subspace, and they are able to treat convergence
in full generality. For a very nice sketch of their main ideas in a comprehensive way
that can be readily understood see [128].

3. Reduction to Hamiltonian J-Hessenberg form and the parameteri-
zation of a Hamiltonian matrix. Applying the algorithm for reducing a matrix
to J-Hessenberg form to a Hamiltonian matrix H (see Table 2.6), a symplectic trans-
formation matrix S is computed such that

SHS−1 =


 @ @@

@ @


 =

[
Â Ĝ

Q̂ −ÂT

]
,

where Q̂ = Q̂T , Ĝ = ĜT as the resulting matrix has to be of Hamiltonian form again.
Hence, Â and Q̂ have to be diagonal matrices, Ĝ a symmetric tridiagonal matrix.
That is, the reduced Hamiltonian matrix is of the form




δ1 β1 ζ2

δ2 ζ2 β2
. . .

. . .
. . .

. . . ζn
δn ζn βn

ν1 −δ1
ν2 −δ2

. . .
. . .

νn −δn




. (3.1)

Hence any 2n × 2n Hamiltonian matrix is symplectically similar to a Hamiltonian
J-Hessenberg matrix which is determined by 4n − 1 parameters. A Hamiltonian J-
Hessenberg matrix will be called unreduced, if νj 6= 0 for all j = 1, . . . , n and ζk 6= 0
for all k = 2, . . . , n. This definition is in analogy to the definition of an unreduced
Hessenberg matrix, as

PHPT =




δ1 β1 0 ζ2
ν1 −δ1 0 0
0 ζ2 δ2 β2 ·
0 0 ν2 −δ2 ·

· · 0 ζn
· · 0 0

0 ζn δn βn
0 0 νn −δn




, (3.2)

where P is as in (2.2). Unreduced J-Hessenberg matrices have similar properties as
unreduced Hessenberg matrices, e.g., Theorem 2.13 on the eigenvalues and eigenvec-
tors holds.

As we will make use of the reduction to the Hamiltonian J-Hessenberg form in
the following, let us have a closer look at the algorithm. We illustrate the major

34

elimination steps on a 6× 6 example. Let

H =




x x x a b c
x x x b d e
x x x c e f
m p q x x x
p r s x x x
q s t x x x




=

[
A G
Q −AT

]

be a Hamiltonian matrix. In the first step of the reduction to J-Hessenberg form, the
entries below the diagonal element in the first column of Q are eliminated by a series
of symplectic Givens transformations. Due to the Hamiltonian structure of H which
is kept in the course of the computations, simultaneously the corresponding elements
in the first row of Q are annihilated. For our example, this yields




x x x a b c
x x x b d e
x x x c e f
m 0 0 x x x
0 r s x x x
0 s t x x x




Next a symplectic Householder matrix is used to reduce the rest of the first column
as far as possible without destroying the already achieved zeros;




x x x a b c
x x x b d e
0 x x c e f
m 0 0 x x 0
0 r s x x x
0 s t x x x



.

Due to the Hamiltonian structure of the matrix, this creates additional zeros in the
(2, 2)-block. A symplectic Gauss transformation completes the reduction of the first
column




x x x a b c
0 x x b d e
0 x x c e f
m 0 0 x 0 0
0 r s x x x
0 s t x x x



.

As before, due to the Hamiltonian structure of the matrix, this creates additional
zeros in the (2, 2)-block. Next, the first columns/rows of the blocks G and −AT
are treated. First a series of symplectic Givens transformations are used in order to
eliminate the entries below the diagonal element in the first column of the current
(2, 2)-block. Due to the Hamiltonian structure of the matrix, this creates additional

35

zeros in the (1, 1)-block.




x 0 0 a b c
0 x x b d e
0 x x c e f
m 0 0 x 0 0
0 r s 0 x x
0 s t 0 x x



.

The first reduction step is completed by a symplectic Householder transformation
which brings the first column/row of the current G in the desired form




x 0 0 a b 0
0 x x b d e
0 x x 0 e f
m 0 0 x 0 0
0 r s 0 x x
0 s t 0 x x



.

Next the second column/row of the 4 blocks are treated bringing our 6 × 6 matrix
into the desired Hamiltonian J-Hessenberg form.

3.1. A canonical form for Hamiltonian J-Hessenberg matrices . We have
noted that the Hamiltonian J-Hessenberg form is preserved by the SR algorithm.
The outcome of an SR iteration is not quite uniquely determined; it is determined
up to a similarity transformation by a trivial matrix (2.5). It is therefore of interest
to develop a canonical form for Hamiltonian J-Hessenberg matrices under similarity
transformations by trivial matrices. We restrict our attention to unreduced Hamil-
tonian J-Hessenberg matrices, since every Hamiltonian J-Hessenberg matrix can be
decomposed into two or more smaller unreduced ones.

Theorem 3.1. Let H̃ be an unreduced Hamiltonian J-Hessenberg matrix. Then
there exists a symplectic J-triangular matrix X such that H = X−1H̃X has the
canonical form

H =

[
0 V
D 0

]
, (3.3)

where D is a signature matrix, and V is a symmetric, irreducible tridiagonal matrix.
D is uniquely determined, V is determined by to a similarity transformation by a
signature matrix, and X is unique up to multiplication by a signature matrix of the
form diag(C,C). Let T denote the D-symmetric matrix DV . The eigenvalues of T
are λ2

i , i = 1, . . . , n, where λi,−λi are the eigenvalues of H.
Proof. See [21].

√

Remark 3.2. (from [21])
• The canonical form could be made unique by insisting that either T ’s or V ’s

subdiagonal entries be positive.
• From the standpoint of numerical stability, it might not be advisable to trans-

form a Hamiltonian matrix into canonical form. In the process, the spectral
information ±λ is condensed into T as λ2. Any small eigenvalues of H̃ are
transformed to tiny eigenvalues of T , which are then extremely vulnerable to
roundoff errors in any subsequent computations on T .

36

• We note that H2 = diag(T T , T). Thus, forming T is tantamount to squaring
H. Squaring a Hamiltonian matrix to compute its eigenvalues is also the basis
of Van Loan’s square reduced method [136]. An error estimate for retrieving
the eigenvalues of a Hamiltonian matrix form their squares computed by Van
Loan’s method is given in [136] and indicates that one may loose up to half the
significant digits as compared to a numerically backward stable method as the
QR method. The same limitations in accuracy apply if we transform a Hamil-
tonian J-Hessenberg matrix into canonical form and compute its eigenvalues
via T .
• The eigenvectors of H can be recovered from those of T . If Ty = λ2y, (y 6= 0),

then [±(Dy)T , yT] are eigenvectors of H associated with eigenvalues ±λ.

4. The Hamiltonian SR algorithm. Eigenvalues and eigenvectors of Hamil-
tonian J-Hessenberg matrices can be computed efficiently by the SR algorithm. This
has already been discussed to some extent in [38, 17, 16, 145]. If H is the current
iterate, then a spectral transformation function q is chosen (such that q(H) ∈ R2n×2n)
and the SR decomposition of q(H) is formed, if possible:

q(H) = SR.

Then the symplectic factor S is used to perform a similarity transformation on H to
yield the next iterate, which we will call Ĥ ;

Ĥ = S−1HS. (4.1)

If rank(q(H)) = 2n and H is a Hamiltonian J-Hessenberg matrix, then so is Ĥ . If
rank(q(H)) = 2n−ν =: 2k and H is an unreduced Hamiltonian J-Hessenberg matrix,

then Ĥ in (4.1) is of the form

Ĥ =




@ @@@

@ @




=




Ĥ11 Ĥ13

Ĥ22 Ĥ24

Ĥ31 −ĤT
11

Ĥ42 −ĤT
22


 , (4.2)

where Ĥ11, Ĥ13, Ĥ31 ∈ Rk×k and Ĥ22, Ĥ24, Ĥ42 ∈ Rn−k×n−k and

•
[
Ĥ11 Ĥ13

Ĥ31 −ĤT
11

]
is a Hamiltonian J-Hessenberg matrix,

• the eigenvalues of

[
Ĥ22 Ĥ24

Ĥ42 −ĤT
22

]
are the ν roots of q(H) that are eigenval-

ues of H .

For a proof see [141, Theorem 4.5], see also [18, Theorem 4.1].

An algorithm for computing S and R explicitly is presented in [38]. As with
explicit QR steps, the expense of explicit SR steps comes from the fact that q(H)
has to be computed explicitly. A preferred alternative is the implicit SR step, an
analogue to the Francis QR step [59]. The first implicit transformation S1 is selected

37

in order to introduce a bulge into the J-Hessenberg matrix H . That is, a symplectic
matrix S1 is determined such that

S−1
1 q(H)e1 = αe1, α ∈ R,

where q(H) is an appropriately chosen spectral transformation function. Applying
this first transformation to the J-Hessenberg matrix yields a Hamiltonian matrix
S−1

1 HS1 with almost J-Hessenberg form having a small bulge. The remaining im-
plicit transformations perform a bulge-chasing sweep down the subdiagonals to re-
store the J-Hessenberg form. That is, a symplectic matrix S2 is determined such that
S−1

2 S−1
1 HS1S2 is of J-Hessenberg form again. If H is an unreduced J-Hessenberg

matrix and rank(q(H)) = 2n, then H̃ = S−1
2 S−1

1 HS1S2 is also an unreduced J-

Hessenberg matrix. Hence, there will be parameters δ̃1, . . . , δ̃n, β̃1, . . . , β̃n, ζ̃1, . . . , ζ̃n,
ν̃2, . . . , ν̃n which determine H̃ . The algorithm for reducing a matrix to J-Hessenberg
form as given in Table 2.6 can be used as a building block for the implicit SR step.
An efficient implementation of the SR step for Hamiltonian J-Hessenberg matrices
as it will be derived in the next section involves O(n) arithmetic operations. Hence a
gain in efficiency is obtained compared to the SR algorithm on J-Hessenberg matrices
where each SR step involves O(n2) arithmetic operations.

Due to the special Hamiltonian eigenstructure, the spectral transformation func-
tion will be chosen either as

q2(H) = (H − µI)(H + µI), µ ∈ R or µ = iω, ω ∈ R,

or

q4(H) = (H − µI)(H + µI)(H − µI)(H + µI), µ ∈ C,Re(µ) 6= 0.

If the chosen shifts are good approximate eigenvalues, we expect deflation at the end
of the SR step as indicated in (4.2). As proposed in [38], a shift strategy similar to
that used in the standard QR algorithm should be used. For example, for a quadruple
shift, we choose the 4 eigenvalues of the 4× 4 Hamiltonian J-Hessenberg submatrix

H4×4 =




δn−1 βn−1 ζn
δn ζn βn

νn−1 −δn−1

νn −δn


 .

There is no need to compute the eigenvalues of H4×4 directly. Comparing q4(H)

q4(H) = H4 − (µ2 + µ2)H2 + µ2µ2I

with the characteristic polynomial of H4×4

det(H4×4 − λI) = λ4 − λ2(an−1 + an) + an−1an − νn−1νnζ
2
n,

where

ak = δ2k + νkβk,

we obtain

q4(H) = H4 − (an−1 + an)H
2 + (an−1an − νn−1νnζ

2
n)I.

38

The first column of q4(H) which is needed to start the implicit SR step is then given
by

q4(H)e1 = (a2
1 + ζ2

2ν1ν2 − (an−1 + an)a1 + an−1an − νn−1νnζ
2
n)e1

+ ζ2ν1[(a1 + a2)− (an−1 + an)]e2 + ν1ν2ζ2ζ3e3. (4.3)

This is exactly the generalized Rayleigh-quotient strategy for choosing the shifts pro-
posed by Watkins and Elsner in [142]. Hence the convergence theorems Theorem 6.2,
6.3 and 6.5 from [142] (see also Theorem 2.20 and Theorem 2.22 in Section 2.2.2) can
be applied here. In particular the Hamiltonian SR algorithm is typically convergent.
Let H0 ∈ R2n×2n have distinct eigenvalues. Let (Hi) be the sequence generated by the
SR algorithm starting from H0, using the generalized Rayleigh-quotient shift strategy
with polynomials of degree 4. Each of the iterates

PHiP
T =

[
X

(i)
11 X

(i)
12

X
(i)
21 X

(i)
22

]
, X

(i)
22 ∈ R

4×4

satisfies ||X(i)
12 || = ||X

(i)
21 || for some fixed norm || · ||, as

X
(i)
21 =




0 0 · · · 0 ζn−1

0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0


 , X

(i)
12 =




0 0 0 0
0 0 0 0

...
...

0 ζn−1 0 0
0 0 0 0



.

Then, from [142, Theorem 6.5] (see also Theorem 2.22), the iterates converge cubically
if they converge.

By applying a sequence of quadruple shift SR steps to a Hamiltonian J-Hessen-
berg matrix H it is possible to reduce the tridiagonal block in H to quasi-diagonal
form with 1× 1 and 2× 2 blocks on the diagonal. The eigenproblem decouples into a
number of simple Hamiltonian 2×2 or 4×4 eigenproblems. In doing so, it is necessary
to monitor the off-diagonal elements in the tridiagonal block of H in order to bring
about decoupling whenever possible. Decoupling occurs if ζj = 0 for some j as the
(1, 2) block of H decouples




β1 ζ2

ζ2
. . .

. . .

. . . βj−2 ζj−1

ζj−1 βj−1 0
0 βj ζj+1

ζj+1 βj+1
. . .

. . .
. . . ζn
ζn βn




.

When dealing with upper Hessenberg matrices, as in the QR setting, decoupling
occurs whenever a subdiagonal element becomes zero. In practice, decoupling is said
to occur whenever a subdiagonal element in the Hessenberg matrix X is suitably
small. For example, in LAPACK [4] if

|xp+1,p| ≤ cu(|xpp|+ |xp+1,p+1|)
39

for some small constant c and the unit roundoff u, then xp+1,p is declared to be zero.
This is justified since rounding errors of order u||X || are already present throughout
the matrix.

Taking the same approach here and recalling that a perfect shuffle of all rows and
columns of a Hamiltonian J-Hessenberg matrix yields a standard upper Hessenberg
matrix (3.2), we check whether

|ζj | ≤ ǫ(|δj−1|+ |δj |)

is satisfied; in this case we will have deflation. Here ǫ is a small constant, e.g., ǫ = cu.

Remark 4.1. As mentioned in (3.2), performing a perfect shuffle on a Hamilto-
nian J-Hessenberg matrix H yields an upper Hessenberg matrix

PHPT =




δ1 β1 0 ζ2
ν1 −δ1 0 0
0 ζ2 δ2 β2 ·
0 0 ν2 −δ2 ·

· · 0 ζn
· · 0 0

0 ζn δn βn
0 0 νn −δn




.

In case ζk = 0, deflation in the usual sense takes place as discussed above. In case a
νk becomes zero in the course of the iteration, two eigenvalues and one right and one
left eigenvector can be read off in such a case.

We proceed the process of applying quadruple SR steps to a Hamiltonian J-
Hessenberg matrix until the problem has completely split into subproblems of dimen-
sion 2 or 4, see Table 4.1 (in Matlab-like notation). In a final step we then have to
solve these small subproblems in order to compute a real Schur-like form from which
eigenvalues and invariant subspaces can be read off. The details for this computation
are given in Section 6.

4.1. Equivalence of the HR and the Hamiltonian SR algorithm. Consider
an SR iteration on a Hamiltonian matrixH . Since the eigenvalues occur in plus-minus
pairs, it is reasonable to choose the shifts in plus-minus pairs. If we wish to effect an
SR iteration of degree 2k with shifts ±µi, i = 1, . . . , k, we use the polynomial

q(H) =

k∏

i=1

(H − µiI)(H + µiI) =

k∏

i=1

(H2 − µ2
i I).

In order to simplify the discussion, we assume that q(H) is nonsingular. Nothing bad
happens in the singular case [141]. We also insist that complex shifts be present in
conjugate pairs, so that q(H) is real.

Theorem 4.2. Let

H =

[
0 V
D 0

]

be an unreduced Hamiltonian J-Hessenberg matrix in canonical form (3.3). Then an
SR algorithm of degree 2k with shifts ±µi, i = 1, . . . , k on H is equivalent to an HR
iteration of degree k with shifts µ2

i , i = 1, . . . , k on the D-symmetric matrix T = DV .

40

Algorithm: SR Iteration

Given a 2n × 2n Hamiltonian J-Hessenberg matrix H compute a 2n × 2n
symplectic matrix S such that Ĥ = S−1HS is a Hamiltonian J-Hessenberg
matrix which the (1, 1), (1, 2), (2, 1) and the (2, 2) blocks are each block-diagonal
where all blocks are either 1 × 1 or 2 × 2. Moreover, the block structure for
all four blocks of Ĥ is the same. Thus the eigenproblem for Ĥ decouples into
2× 2 and 4× 4 subproblems.

q = 0
repeat until q = n

set all ζi to zero that satisfy |ζi| ≤ ǫ(|δi−1|+ |δi|)
find the largest nonnegative q and the smallest nonnegative p

such that if

H =




A11 G11

A22 G22

A33 G33

Q11 −AT11
Q22 −AT22

Q33 −AT33



,

where T11 ∈ Rp×p, T22 ∈ R(n−p−q)×(n−p−q), and T33 ∈ Rq×q for
T ∈ {A,G,Q}, then G33 is block diagonal with 1× 1 and 2× 2
blocks and G22 is unreduced symmetric tridiagonal.
if q < n

perform a quadruple SR step on

[
A22 G22

Q22 −AT22

]

update H accordingly
end

end

Table 4.1
SR Iteration

Proof. See [21].
√

Please note, that this result is of theoretical interest only, as the resulting method
suffers from a possible loss of half the significant digits during the transformation to
canonical form.

5. The parameterized SR step. As will be shown in this section, the SR algo-
rithm for a Hamiltonian J-Hessenberg matrix H can be rewritten in a parameterized
form that will work only with the 4n − 1 parameters which determine H instead of
the entire matrix in each iteration step. Thus only O(n) flops per SR step are needed
compared to O(n3) flops when working on the actual Hamiltonian matrix. The key to
the development of a SR algorithm working only on the parameters is the observation

41

that at any point in the implicit SR step only a certain, limited number of rows and
columns of the Hamiltonian J-Hessenberg matrix is worked on. In the leading part of
the intermediate matrices the Hamiltonian J-Hessenberg form is already retained and
is not changed any longer, while the trailing part has not been changed yet. Hence,
from the leading part the first parameters of the resulting J-Hessenberg matrix can be
read off, while from the trailing part the last parameters of the original J-Hessenberg
matrix can still be read off. Recall the implicit SR step as described in Section 2.
The first implicit transformation S1 is selected in order to introduce a bulge into the
J-Hessenberg matrix H . That is, a symplectic matrix S1 is determined such that

S−1
1 q(H)e1 = αe1, α ∈ R,

where q(H) is an appropriately chosen spectral transformation function. Applying
this first transformation to the J-Hessenberg matrix yields a Hamiltonian matrix
S−1

1 HS1 with almost J-Hessenberg form having a small bulge. The remaining im-
plicit transformations perform a bulge-chasing sweep down the subdiagonals to re-
store the J-Hessenberg form. That is, a symplectic matrix S2 is determined such that
S−1

2 S−1
1 HS1S2 is of J-Hessenberg form again. If H is an unreduced J-Hessenberg

matrix and rank(q(H)) = 2n, then H̃ = S−1
2 S−1

1 HS1S2 is also an unreduced J-

Hessenberg matrix. Hence, there will be parameters δ̃1, . . . , δ̃n, β̃1, . . . , β̃n, ζ̃1, . . . , ζ̃n,
ν̃2, . . . , ν̃n which determine H̃ . During the bulge-chasing sweep the bulge is succes-
sively moved down the subdiagonals, one row and one column at a time. Our goal in
this section will be to derive these parameters directly from the original ones.

Due to the special Hamiltonian eigenstructure, the spectral transformation func-
tion will be chosen either as

q2(H) = (H − µI)(H + µI), µ ∈ R or µ = iω, ω ∈ R,

or

q4(H) = (H − µI)(H + µI)(H − µI)(H + µI), µ ∈ C,Re(µ) 6= 0.

In case an exceptional shift step is needed in the SR algorithm, one might want to
use a single shift

q1(H) = H − µI, µ ∈ R.

We will consider each of the three cases separately.

5.1. A single shift implicit SR step. Consider a single shift implicit SR step,
which might be used as an exceptional shift step in the SR iteration. As H is a real
matrix, for a single shift the shift polynomial q1(H) = H − µI should be chosen for
µ ∈ R. The first column of q1 is of the form

x = q1(H)e1 = (δ1 − µ)e1 + ν1en+1.

This vector can be transformed into a multiple of e1 by a symplectic Givens trans-
formation G1 where the parameters c1, s1 are given by [c1, s1] = givens(δ1 − µ, ν1).
Hence, the first step of the implicit SR step introduces a bulge by a similarity trans-
formation of H with

G1 =




c1 s1
In−1

−s1 c1
In−1


 . (5.1)

42

This transformation yields

H1 = G1HG
−1
1 =




δ̃1 β′
1 ζ′2

b1 δ2 ζ′2 β2 ζ3

δ3 ζ3
. . .

. . .

. . .
. . . βn−1 ζn

δn ζn βn
ν′1 −δ̃1 −b1

ν2 −δ2
ν3 −δ3

. . .
. . .

νn −δn




,

where

δ̃1 = (c21 − s21)δ1 + c1s1(ν1 + β1), ζ′2 = c1ζ2,
β′

1 = c21β1 − s21ν1 − 2c1s1δ1, b1 = s1ζ2,
ν′1 = c21ν1 − s21β1 − 2c1s1δ1.

Now we will restore the J-Hessenberg form by chasing the bulge b1 down the diagonal.
In order to do so, we will apply the algorithm ’Reduction to J-Hessenberg form’ which
is given in Table 2.6 to H1. A symplectic matrix S2 is constructed such that

H̃ = S2H1S
−1
2 (5.2)

is in J-Hessenberg form. Due to the special form of H1, the algorithm simplifies
considerably.

First a symplectic Gauss transformation L2 where the parameters are given by
[c2, d2] = gauss1(b1, ν1)

L2 =




c2 d2

c2 d2

In−2

c−1
2

c−1
2

In−2




is applied to eliminate the (1, 2) element, resulting in

H2 = L2H1L
−1
2 =




δ̃1 b2 β̃1 ζ′′2
δ2 ζ′′2 β′

2 ζ′3

δ3 ζ′3
. . .

. . .

. . .
. . . βn−1 ζn

δn ζn βn
ν̃1 −δ̃1

ν′2 −b2 −δ2
ν3 −δ3

. . .
. . .

νn −δn




,

43

where

β̃1 = −d2
2ν2 + c22β

′
1, ν̃1 = c−2

2 ν′1,
β′

2 = c22β2 − c2d2b1, ν′2 = c−2
2 ν2,

ζ′′2 = −d2c2(δ2 + δ̃1) + c22ζ
′
2, b2 = d2c

−1
2 ν2,

ζ′3 = c2ζ3.

The bulge has moved from the (2, 1) position to the (1, 2) position. Due to the
Hamiltonian structure, simultaneously the (n+ 1, n+ 2)) position moved to the (n+
2, n+1) position. Hence, the first column of H2 is in the desired form. Next the (n+
1)st column is treated. A symplectic Givens transformation G2 where the parameters
c3, s3 are given by [c3, s3] = givens(ζ′′2 , b2)

G2 =




1
c3 s3

In−2

1
−s3 c3

In−2




is used to eliminate the (n+2, n+1) entry (and simultaneously the (1, 2) entry). This
gives H3 = G2H2G

T
2

H3 =




δ̃1 β̃1 ζ′′′2

δ̃2 ζ′′′2 β′′
2 ζ̌3

b3 δ3 ζ′′3 β3 ζ4

δ4 ζ4
. . .

. . .

. . .
. . .

. . . ζn
δn ζn δn

ν̃1 −δ̃1
ν′′2 −δ̃2 −b3

ν3 −δ3
ν4 −δ4

. . .
. . .

νn −δn




,

where

δ̃2 = (c23 − s23)δ2 − c3s3(ν′2 + β′
2), ζ′′′2 = c3ζ

′′
2 − s3b2,

β′′
2 = c23β

′
2 − 2c3s3δ2 − s23ν′2, ζ′′3 = c3ζ

′
3,

ν′′2 = c23ν
′
2 − 2c3s3δ2 − s23β′′

2 , b3 = s2ζ
′
3.

The first and the (n+ 1)st column of H3 are in the desired form. The bulge has been
chased from position (2, 1) ((n+1, n+2)) to position (3, 2) ((n+2, n+3)). Continuing
in the same fashion, it can be chased until the J-Hessenberg form has been restored.
In order to derive an algorithm that works only on the parameters which determine
the Hamiltonian matrix H , let us consider the next step of the process as well. We
will see that δ̃1, δ̃2, ν̃1 and β̃1 will not be changed in the following calculations. They
belong to the set of parameters which determine the matrix H̃ (5.2).

44

In the next step, first a symplectic Gauss transformation L3

L3 =




1
c4 d4

c4 d4

In−3

1
c−1
4

c−1
4

In−3




with [c4, d4] = gauss1(b2, ν
′′
2) to eliminate the (3, 2) element is applied, resulting in

H4 = L3H3L
−1
3

H4 =




δ̃1 β̃1 ζ̃2
δ̃2 b4 ζ̃2 β̃2 ζ′′′3

δ3 ζ′′′3 β′
3 ζ′4

δ4 ζ′4 β4 ζ5

δ5 ζ5 β5
. . .

. . .
. . .

. . . ζn
δn ζn δn

ν̃1 −δ̃1
ν̃2 −δ̃2

ν′3 −b4 −δ3
ν4 −δ4

ν5 −δ5
. . .

. . .

νn −δn




,

where

β̃2 = −d2
4ν3 + c24β

′′
2 , ζ′4 = c4ζ4,

β′
3 = c24β3 − c4d4b3, ν̃2 = c−2

4 ν′′2 ,
ζ′′′′2 = c4ζ

′′′
2 , ν′3 = c−2

4 ν3,

ζ′′′3 = −d4c4(δ3 + δ̃2) + c24ζ
′′
3 , b4 = d4c

−1
4 ν3.

Comparing these computations with those of generating H2, we find that the set of
parameters is transformed in the same way as before, in the formulae just the indices
of the parameters have been increased by one. But there is an additional computation
updating ζ2 (as there is no ζ1 such an update did not occur in the computation of
H2).

Next a symplectic Givens transformation G3 with [c5, s5] = givens(ζ′′′3 , b4)

G3 =




1
1

c5 s5
In−3

1
1

−s5 c5
In−3




45

is used to eliminate the (2, 3) entry. The similarity transformation H5 = G3H5G
T
3

yields

H5 =




δ̃1 β̃1 ζ̃2
δ̃2 ζ̃2 β̃2 ζ′′′′3

δ̃3 ζ′′′′3 β′′
3 ζ′4

b5 δ4 ζ′4 β4 ζ5

δ5 ζ5 β5
. . .

. . .
. . .

. . . ζn
δn ζn δn

ν̃1 −δ̃1
ν̃2 −δ̃2

ν′′3 −δ̃3 −b5
ν4 −δ4

ν5 −δ5
. . .

. . .

νn −δn




,

where

δ̃3 = (c25 − s25)δ3 − c5s5(ν′3 + β′
3), ζ′′′′3 = c5ζ

′′′
3 − s5b4,

β′′
3 = c25β

′
3 − 2c5s5δ3 − s25ν′3, ζ′4 = c5ζ4,

ν′′3 = c25ν
′
3 − 2c5s5δ3 − s25β′

3, b5 = s5ζ4.

Comparing these computations with those of generating H3, we find that the set of
parameters is transformed in the same way as before, in the formulae just the indices
of the parameters have been increased by one. The bulge has been chased down
another row and column, we have the same situation as in H3.

The parameters δ̃1, δ̃2, δ̃3, β̃1, β̃2, ζ̃2, ν̃1 and ν̃2 of the resulting matrix H̃ can be
read off. In general, once the bulge is chased down j rows and columns, the leading
j − 1 rows and columns of each block are not changed anymore. The parameters
δ̃1, . . . , δ̃j+1, β̃1, . . . , β̃j , ζ̃2, . . . , ζ̃j−1, ν̃1, . . . , ν̃j of the resulting matrix H̃ can be read
off.

From the given reduction it is easy to derive an algorithm that computes the
parameters of H̃ one set (that is, δ̃j+1, β̃j , ζ̃j , ν̃j) at a time given the parameters of H .
One has to be careful when the columns n− 1 and 2n− 1 are treated, as there is no
ζn+1. The non-parameterized version of the algorithm is summarized in Table 5.1. A
corresponding Matlab programme called param sr implicit single working only
on the parameters is given in Appendix B. A careful flop count reveals

• the computation of the parameters of a Givens transformation requires 4
multiplications, 1 addition and 1 square root,
• the computation of the parameters of a Gauss transformation requires 4 mul-

tiplications, 1 addition and 2 square roots,
• the introduction of the bulge requires 15 multiplications and 7 additions,
• the application of the Gauss transformation requires in general 15 multipli-

cations and 4 additions (in the last step, only 14 multiplications are needed),
• the application of the Givens transformation requires in general 16 multipli-

cations and 11 additions (in the last step, only 13 multiplications are needed),

46

Algorithm: Single shift implicit SR step

Given a 2n× 2n Hamiltonian matrix A in J-Hessenberg form compute a single
shift implicit SR step. That is, given a real shift µ, the symplectic matrix
S of the SR decomposition A − µI = SR is computed implicitly. A will be
overwritten by its new J–Hessenberg form SAS−1.

compute G1 such that G1((δ1 − µ)e1 + ν1en+1) = αe1
A = G1AG

T
1

S = G1

for j = 1 : n− 1
if Aj+1,j 6= 0 and An+j,n+j = 0
then stop, reduction does not exist
end
compute Lj+1 such that (Lj+1A)j+1,j = 0
A = Lj+1AL

−1
j+1

S = Lj+1S
compute Gj+1 such that (Gj+1A)n+j+1,n+j = 0
A = Gj+1AG

T
j+1

S = Gj+1S
end

Table 5.1
Single implicit SR step

so that the first step of the algorithm (Givens transformation to introduce the bulge)
requires 19 multiplications, 8 additions and 1 square root, followed by repeated ap-
plications of a Gauss and a Givens transformation which requires (n− 1)× 39 multi-
plications, 17 additions and 3 square roots (minus 2 multiplications in the last step).
Hence, the algorithm requires 39n− 22 multiplications, 17n− 9 additions and 3n− 2
square roots. In other words, the implicit single SR step working on the parameters
only requires O(n) flops. As the entire process works only on the parameters which
determine the Hamiltonian matrix, the Hamiltonian structure is forced in every step
of the algorithm.

5.2. A double shift implicit SR step. Now let us consider a double shift
implicit SR step. AsH is a Hamiltonian matrix, for a double shift the shift polynomial
q2(H) = (H − µI)(H + µI) should be chosen for µ ∈ R or µ = iω, ω ∈ R. In the first
case, the first column of q2 is of the form

x = q2(H)e1 = (H2 − µ2I)e1 = (δ21 + ν1β1 − µ2)e1 + ν1ζ2e2.

while in the second case the first column of q2 is of the form

x = q2(H)e1 = (H2 + ω2I)e1 = (δ21 + ν1β1 + ω2)e1 + ν1ζ2e2.

In case, a Rayleigh-quotient strategy is used, the shifts will be chosen as the eigenval-
ues of

H2×2 =

[
δn βn
νn −δn

]
.

47

There is no need to compute the eigenvalues of H2×2 directly. Comparing q2(H) =
(H − µI)(H + µI) = H2 − µ2I with the characteristic polynomial of H2×2

det(H2×2 − λI) = λ2 − (δ2n + βnνn)

yields that q2 should be chosen as

q2(H) = H2 − (δ2n + βnνn)I.

The first column is then given by

q2(H)e1 = (δ21 + ν1β1 − δ2n − βnνn)e1 + ν1ζ2e2.

Hence, in any case, the first column of q2 has the same form. This vector can be
transformed into a multiply of e1 by a symplectic Givens transformation of type II

G̃1 =




c1 s1
−s1 c1

In−2

c1 s1
−s1 c1

In−2



. (5.3)

with [c1, s1] = givens(δ21 + ν1β1 − s2, ν1ζ2) where s = µ, s = iω or s2 = δ2n + βnνn
depending on the choice of the shift. Hence, the bulge is introduced by a similarity
transformation of H with G̃1. This transformation yields

H1 = G̃1HG̃
T
1 =




δ̃1 b1 β′
1 ζ′2 b3

b1 δ′2 ζ′2 β′
2 ζ′3

δ3 b3 ζ′3 β3 ζ4

δ4 ζ4
. . .

. . .

. . .
. . .

. . . ζn
δn ζn βn

ν′1 b2 −δ̃1 −b1
b2 ν′2 −b1 −δ′2

ν3 −δ3
ν4 −δ4

. . .
. . .

νn −δn




,

where

δ̃1 = c21δ1 + s21δ2, ζ′3 = c1ζ3,
δ′2 = c21δ2 + s21δ1, b1 = c1s1(δ2 − δ1),
ν′1 = c21ν1 + s21ν2, b2 = c1s1(ν2 − ν1),
ν′2 = c21ν2 + s21ν1, b3 = s1ζ3,
β′

1 = c21β1 + s21β2 + 2c1s1ζ2,
β′

2 = s21β1 + c21β2 − 2c1s1ζ2,
ζ′2 = (c21 − s21)ζ2 + c1s1(β2 − β1).

The (1, 1) block (and hence, consequently the (2, 2) block) is symmetric although
this is not forced by the Hamiltonian structure. This property will be destroyed in

48

the next step, but it will be retained later. Now we will restore the J-Hessenberg
form by applying Algorithm 2.6, that is a symplectic matrix S2 is constructed such
that

H̃ = S2H1S
−1
2 (5.4)

is in J-Hessenberg form. As in the previous section, the algorithm simplifies due to
the special structure of H1. First a symplectic Givens transformation G2

G2 =




1
c2 s2

In−2

1
−s2 c2

In−2




with [c2, s2] = givens(b1, b2) is used to eliminate the bulge element b2 in the (n+2, 1)
position. This gives H2 = G2H1G

T
2

H2 =




δ̃1 b′2 β′
1 ζ′′2 b3

b′1 δ′′2 ζ′′2 β′′
2 ζ′′3

b4 δ3 b3 ζ′′3 β3 ζ4

δ4 ζ4
. . .

. . .

. . .
. . .

. . . ζn
δn ζn βn

ν′1 −δ̃1 −b′1
ν′′2 −b′2 −δ′′2 −b4

ν3 −δ3
ν4 −δ4

. . .
. . .

νn −δn




,

where

δ′′2 = (c22 − s22)δ′2 + c2s2(ν
′
2 + β′

2), ζ′′3 = c2ζ
′
3,

β′′
2 = −s22ν′2 − 2c2s2δ

′
2 + c22β

′
2, b′1 = c2b1 + s2b2,

ν′′2 = c22ν
′
2 − 2c2s2δ

′
2 − s22β′

2, b′2 = c2b1 + s2ζ
′
2,

ζ′′2 = c2ζ
′
2 − s2b1, b4 = s2ζ

′
3.

The (1, 1) block is no longer symmetric, an additional bulge element is created by this
transformation.

Next a symplectic Gauss transformation

L1 =




c3 d3

c3 d3

In−2

c−1
3

c−1
3

In−2




49

with [c3, d3] = gauss1(b′1, ν
′
1) is used to eliminate the element in position (2, 1). The

transformation H3 = L1H2L
−1
1 does not create any new entry;

H3 =




δ̃1 b′′2 β′′
1 ζ′′′2 b′3

δ′′2 ζ′′′2 β′′′
2 ζ′′′3

b′4 δ3 b′3 ζ′′′3 β3 ζ4

δ4 ζ4
. . .

. . .

. . .
. . .

. . . ζn
δn ζn βn

ν′′1 −δ̃1
ν′′′2 −b′′2 −δ′′2 −b′4

ν3 −δ3
ν4 −δ4

. . .
. . .

νn −δn




,

where

β′′
1 = c23β

′
1 − 2c3d3b

′
2 − d2

3ν
′′
2 , ν′′′2 = c−2

3 ν′′2 ,
β′′′

2 = c23β
′′
2 − c3d3b

′
1, b′′2 = b′2 + d3ν

′′
2 /c3,

ζ′′′2 = c23ζ
′′
2 − c3d3(δ̃1 + δ′′2), b′3 = c3b3 − d3b4,

ζ′′′3 = c3ζ
′′
3 , b′4 = b4/c3,

ν′′1 = c−2
3 ν′1.

The first column of H3 is in the desired form. Next column n+ 1 is treated. But let
us note first that

rank(

[
b′′2 ζ′′′2

b′4 ζ′′′3

]
) = 1. (5.5)

In order to see this we have to have a closer look at the entries of this 2× 2 matrix:

b′4 = b4/c3 = s2ζ
′
3/c3 = s2c1ζ3/c3,

ζ′′′3 = c3ζ
′′
3 = c3c2ζ

′
3 = c3c2c1ζ3.

Hence,

ζ′′′3 = c23c2b
′
4/s2.

So, if we can show that b′′2 and ζ′′′2 satisfy the same relation

ζ′′′2 = c23c2b
′′
2/s2, (5.6)

then the above 2 × 2 matrix has to have rank 1. See Appendix A for a detailed
derivation of this relation.

Next a symplectic Givens transformation

G′
2 =




1
c4 s4

In−2

1
−s4 c4

In−2




50

with [c4, s4] = givens(ζ′′′2 ,−b′′2) is applied to eliminate the bulge element b′′2 . This
gives H4 = G′

2H3(G
′
2)
T

H4 =




δ̃1 β′′
1 ζ′′′′2 b′3

δ′′′2 ζ′′′′2 β′′′′
2 ζ′′′′3

δ3 b′3 ζ′′′′3 β3 ζ4

δ4 ζ4
. . .

. . .

. . .
. . .

. . . ζn
δn ζn βn

ν′′1 −δ̃1
ν′′′′2 −δ′′′2

ν3 −δ3
ν4 −δ4

. . .
. . .

νn −δn




,

where

δ′′′2 = c24δ
′′
2 + c4s4(ν

′′′
2 + β′′′

2)− s24δ′′2 , ζ′′′′2 = −s4b′′2 + c4ζ
′′′
2 ,

β′′′′
2 = c24β

′′′
2 − 2c4s4δ

′′
2 − s24ν′′′2 , ζ′′′′3 = −s4b′4 + c4ζ

′′′
3 ,

ν′′′′2 = c24ν
′′′
2 − 2c4s4δ

′′
2 − s24β′′′

2 .

No new entry is created. In particular, we have

[
c4 s4
−s4 c4

] [
b′′2 ζ′′′2

b′4 ζ′′′3

] [
c4 −s4
s4 c4

]
=

[
0 ζ′′′′2

b′′4 ζ′′′′3

]
,

due to the way c4 and s4 are chosen. But as the rank of the modified 2× 2 matrix is
1, it follows that

b′′4 = 0.

Next the bulge element b′3 is annihilated by a symplectic Givens transformation
of type II

G̃2 =




1
c5 s5
−s5 c5

In−3

1
c5 s5
−s5 c5

In−3




51

with [c5, s5] = givens(ζ′′′′2 , b′3). This yields

H5 =




δ̃1 β̃1 ζ′′′′′2

δ̃2 b1 ζ′′′′′2 β′′′′′
2 ζ′′′′′3 b3

b1 δ′3 ζ′′′′′3 β′
3 ζ′4

δ4 b3 ζ′4
. . .

. . .

. . .
. . .

. . . ζn
δn ζn βn

ν̃1 −δ̃1
ν′′′′′2 b2 −δ̃2 −b1
b2 ν′3 −b1 −δ′3

ν4 −δ4
. . .

. . .

νn −δn




,

where

δ′′′′2 = c25δ
′′′
2 + s25δ3, ζ′4 = c5ζ4,

δ′3 = c25δ3 + s25δ
′′′
2 , ν′′′′′2 = c25ν

′′′′
2 + s25ν3,

β′′′′′
2 = c25β

′′′′
2 + 2c5s5ζ

′′′′
3 + s25β3, ν′3 = c25ν3 + s25ν

′′′′
2 ,

β′
3 = c25β3 − 2c5s5ζ

′′′′
3 + s25β

′′′′
2 , b1 = c5s5(δ3 − δ′′′2),

ζ′′′′′2 = c5ζ
′′′′
2 + s5b

′
3, b2 = c5s5(ν3 − ν′′′′2),

ζ′′′′′3 = c25ζ
′′′′
3 + c5s5(β3 − β′′′′

2)− s25ζ′′′′3 , b3 = s5ζ4.

The first and the (n + 1)st column of H5 are in the desired form. The situation is
the same as in H1, just the bulge has moved one row and one column further down
the diagonal in each block. Continuing in the same fashion, it can be chased until the
J-Hessenberg form has been restored. In order to derive an algorithm that works only
on the parameters which determine the Hamiltonian matrix H , let us consider the
next step of the process as well. We will see that δ̃1, δ̃2 = δ′′′′2 , ν̃1 = ν′′1 and β̃1 = β′′

1

will not be changed in the following calculations. They belong to the set of parameters
which will determine the matrix H̃ (5.4).

As in H1, the (1, 1) block (and hence, consequently the (2, 2) block) is symmetric
although this is not forced by the Hamiltonian structure.

For the next step of the algorithm the second column of H5 is treated. First a
symplectic Givens transformation G3

G3 =




I2
c6 s6

In−3

I2
−s6 c6

In−3




with [c6, s6] = givens(b1, b2) is used to eliminate the bulge element b2 in the (n+3, 2)

52

position. This gives H6 = G3H5G
T
3

H6 =




δ̃1 β̃1 ζ′′′′′2

δ̃2 b′2 ζ′′′′′2 β′′′′′
2 ζ′′′′′′3 b3

b′1 δ′′3 ζ′′′′′′3 β′′
3 ζ′′4

b4 δ4 b3 ζ′′4
. . .

. . .

. . .
. . .

. . . ζn
δn ζn βn

ν̃1 −δ̃1
ν′′′′′2 −δ̃2 −b′1

ν′′3 −b′2 −δ′′3 −b4
ν4 −δ4

. . .
. . .

νn −δn




,

where

δ′′3 = (c26 − s26)δ′3 + c6s6(ν
′
3 + β′

3),

β′′
3 = −s26ν′3 − 2c6s6δ

′
3 + c26β

′
3,

ζ′′′′′′3 = c6ζ
′′′′′
3 − s6b1,

ζ′′4 = c6ζ
′
4,

ν′′3 = c26ν
′
3 − 2c6s6δ

′
3 − s26β′

3,

b′1 = c6b1 + s6b2,

b′2 = c2b1 + s2ζ
′′′′′
3 ,

b4 = s6ζ
′
4.

Comparing these computations with those of H2, we find that the next set of pa-
rameters is transformed in the same way as before, in the formulae just the indices
have been increased by one. As before, the (1, 1) block is no longer symmetric, an
additional bulge element is created by this transformation.

Next a symplectic Gauss transformation

L2 =




1
c7 d7

c7 d7

In−3

1
c−1
7

c−1
7

In−3




with [c7, d7] = gauss1(b′1, ν
′′′′′
2) is used to eliminate the element in position (3, 2).

53

The transformation H7 = L2H6L
−1
2 does not create any new entry.

H7 =




δ̃1 β̃1 ζ′′′′′′2

δ̃2 b′′2 ζ′′′′′′2 β′′′′′′
2 ζ′′′′′′′3 b′3

δ′′3 ζ′′′′′′′3 β′′′
3 ζ′′′4

b′4 δ4 b′3 ζ′′′4

. . .
. . .

. . .
. . .

. . . ζn
δn ζn βn

ν̃1 −δ̃1
ν′′′′′′2 −δ̃2

ν′′′3 −b′′2 −δ′′3 −b′4
ν4 −δ4

. . .
. . .

νn −δn




,

where

β′′′′′′
2 = c27β

′′′′′
2 − 2c7d7b

′
2 − d2

7ν
′′
3 , ν′′′3 = c−2

7 ν′′3 ,
β′′′

3 = c27β
′′
3 − c7d7b

′
1, b′′2 = b′2 + d7ν

′′
3 /c7,

ζ′′′′′′′3 = c27ζ
′′′′′′
3 − c7d7(δ̃2 + δ′′3), b′3 = c7b3 − d7b4,

ζ′′′4 = c7ζ
′′
4 , b′4 = b4/c7

ν′′′′′′2 = c−2
7 ν′′′′′2 , ζ′′′′′′2 = c7ζ

′′′′′
2 .

Comparing these computations with those of generating H3, we find that the next set
of parameters is transformed in the same way as before, in the formulae just the indices
of the parameters have been increased by one. But there is an additional computation
updating ζ2 (as there is no ζ1 such an update did not occur in the computation of
H3).

Let us note first that in complete analogy to (5.5) we have

rank(

[
b′′2 ζ′′′′′′′3

b′4 ζ′′′4

]
) = 1.

Hence, the next two steps which consist of applying a symplectic Givens transforma-
tion G′

3 to eliminate the entry in position (3, 2) and a symplectic Givens transforma-

tion G̃3 of type II to eliminate the entry in position (3, n+2) are completely analogous
to the derivation of H4 and H5, in the formulae the indices of the parameters have to
be increased by one.

From the given reduction it is easy to derive an algorithm that computes the
parameters of H̃ one set (that is, δ̃j+1, β̃j , ζ̃j , ν̃j) at a time given the parameters of H .
One has to be careful when the columns n− 1 and 2n− 1 are treated, as there is no

54

ζn+1 and the bulge will be chased out of the matrix. Assume that we have achieved




. . .
. . .

x x x ⊕
x x x x

x ⊕ x x
. . .

. . .

x x
x x

x x




,

where the bulge entries are denotes by ⊕ and all other matrix entries by x. This is a
situation similar to the one in H4. Next, a symplectic Givens transformation of type
II is used to eliminate the entry in (n, 2n− 3). This yields




. . .
. . .

x x x
x ⊕ x x x
⊕ x x x

. . .
. . .

x x
x ⊕ x ⊕
⊕ x ⊕ x




.

One part of the bulge (denoted b3 in H5) has been moved out of the matrix, hence
the computations needed here do not involve the computation of b3 (and ζn+1 as
this parameter does not exist. For the rest of the discussion in this section it will be
assumed that only parameters within the allowed index range are computed.). Next,
a symplectic Givens transformation is applied which eliminates the entry (2n, n− 1)




. . .
. . .

x x x
x ⊕ x x x
⊕ x x x

. . .
. . .

x x
x x ⊕

x ⊕ x




.

Comparing the necessary computations with those in generating H2 or H6, it can be
found that the bulge entry b4 is not generated here. A symplectic Gauss transforma-

55

tion annihilates the (n, n− 1) entry




. . .
. . .

x x x
x ⊕ x x x

x x x
. . .

. . .

x x
x x

x ⊕ x




.

Neither the bulge entry b′3 nor the entry b′4 are generated (compare with the situation
in generating H3 or H7). A symplectic Givens transformation to eliminate the last
bulge entry completes the bulge chase




. . .
. . .

x x x
x x x x

x x x
. . .

x x
x x

x ⊕ x




.

The symplectic Givens transformation of type II, which was necessary in treating
the previous columns, is not needed here. The non-parameterized version of the
algorithm is summarized in Table 5.2. A corresponding Matlab programme called
param sr implicit double working only on the parameters is given in Appendix B.
A careful flop count reveals

• the computation of the parameters of a Givens transformation requires 4
multiplications, 1 addition and 1 square root,
• the computation of the parameters of a Gauss transformation requires 4 mul-

tiplications, 1 addition and 2 square roots,
• the introduction of the bulge requires 28 multiplications and 16 additions,
• in the SR step a sequence of Givens, Gauss, Givens and Givens type II is

applied where the application of the first Givens transformation requires in
general 20 multiplications and 10 additions,
• the application of the Gauss transformation requires in general 20 multipli-

cations and 7 additions,
• the application of the second Givens transformation requires in general 17

multiplications and 9 additions,
• the application of the Givens transformation of type II requires in general 27

multiplications and 14 additions,
so that the first step of the algorithm (Givens transformation to introduce the bulge)
requires 32 multiplications, 17 additions and 1 square root, followed by repeated
applications of a Givens, a Gauss, a Givens and a Givens type II transformation
which requires (n − 1)× 69 multiplications, 29 additions and 4 square roots plus
(n− 2)× 31 multiplications, 15 additions and 1 square root.

56

Algorithm: Double shift implicit SR step

Given a 2n×2n Hamiltonian matrix A in J-Hessenberg form compute a double
shift implicit SR step. That is, given a real shift µ or a purely imaginary shift
µ = iω, the symplectic matrix S of the SR decomposition (A − µI)(A + µI)
is computed implicitly. A will be overwritten by its new J–Hessenberg form
SAS−1.

compute G̃1 such that G̃1((δ
2
1 + ν1β1µ

2)e1 + ν1ζ2e2) = αe1
A = G̃1AG̃

T
1

S = G̃1

for j = 1 : n− 1
compute Gj+1 such that (Gj+1A)n+j+1,j = 0
A = Gj+1AG

T
j+1

S = Gj+1S
if Aj+1,j 6= 0 and An+j,n+j = 0
then stop, reduction does not exist
end
compute Lj+1 such that (Lj+1A)j+1,j = 0
A = Lj+1AL

−1
j+1

S = Lj+1S
compute Gj+1 such that (Gj+1A)n+j+1,n+j = 0
A = Gj+1AG

T
j+1

S = Gj+1S
if j < n− 1
then compute G̃j+1 such that (G̃j+1A)n+j+2,n+j = 0

A = G̃j+1AG̃
T
j+1

S = G̃j+1S
end

end

Table 5.2
Double shift implicit SR step

Hence, the algorithm requires 100n − 131 multiplications, 44n − 59 additions
and 5n − 3 square roots. In other words, the implicit double SR step working on
the parameters only requires O(n) flops. As the entire process works only on the
parameters which determine the Hamiltonian matrix, the Hamiltonian structure is
forced in every step of the algorithm.

5.3. A quadruple shift implicit SR step. Finally, let us consider an implic-
itly shifted quadruple shift step. The shift γ ∈ C, Re(γ) 6= 0 defines the spectral
transformation

(H − γI)(H + γI)(H − γI)(H + γI).

An implicitly shifted quadruple step can also be used to perform two double shift
steps, in that case we have shifts µ and η that are either real or purely imaginary.
The spectral transformation is given by

X = (H − µI)(H + µI)(H − ηI)(H + ηI). (5.7)

57

With µ = γ and η = γ this is just the spectral transformation given above. Hence,
let us consider the slightly more general expression in our derivations.

First we need to compute the first column of X (5.7) in order to determine the
first symplectic transformation which will introduce the bulge to be chased;

x = (H − µI)(H + µI)(H − ηI)(H + ηI)e1

= (H2 − µ2I)(H2 − η2I)e1

= (H2 − µ2I)[(δ21 + ν1β1 − η2)e1 + ν1ζ2e2]

= (H2 − µ2I)[(a1 − η2)e1 + ν1ζ2e2]

where we used for notational convenience

aj = δ2j + νjβj .

Hence,

x = (a1 − η2)[(a1 − µ2)e1 + ν1ζ2e2] + ν1ζ2[H(δ2e2 + ν2en+2 − µ2e2]

= (a1 − η2)[(a1 − µ2)e1 + ν1ζ2e2]

+ ν1ζ2[δ2(δ2e2 + ν2en+2) + ν2(ζ2e1 + β2e2 + ζ3e3 − δ2en+2)− µ2e2]

= [(a1 − η2)(a1 − µ2) + ν1ν2ζ
2
2]e1 + ν1ζ2[(a1 + a2 − η2 − µ2)]e2 + ν1ν2ζ2ζ3e3

= [a2
1 + ν1ν2ζ

2
2 − (η2 + µ2)a1 + µ2η2]e1 + ν1ζ2[(a1 + a2)− (η2 + µ2)]e2

+ ν1ν2ζ2ζ3e3

=: x1e1 + x2e2 + x3e3.

In case, a Raleigh-quotient like shift strategy is chosen, the spectral transformation
function q4 has to be chosen as derived in (4.3)

q4(H)e1 = (a2
1 + ζ2

2ν1ν2 − (an−1 + an)a1 + an−1an − νn−1νnζ
2
n)e1

+ ζ2ν1[(a1 + a2)− (an−1 + an)]e2 + ν1ν2ζ2ζ3e3.

A symplectic Householder transformation or the product of two symplectic Givens

transformations G̃
(1)
1 G̃

(1)
2 can be used to transform this vector into a multiple of e1:

G̃
(1)
1 G̃

(1)
2 x = αe1

for some α where G̃
(1)
1 G̃

(1)
2 is given by




c2 s2
−s2 c2

In−2

c2 s2
−s2 c2

In−2







1
c1 s1
−s1 c1

In−3

1
c1 s1
−s1 c1

In−3




,

where [c1, s1] = givens(x2, x3) and [c2, s2] = givens(x1, c1x2 + s1x3). Applying G̃
(1)
2

58

yields

H1 = G̃
(1)
2 H(G̃

(1)
2)T =




δ1 β1 ζ
(1)
2 e3

δ
(1)
2 e1 ζ

(1)
2 β

(1)
2 ζ

(1)
3 e4

e1 δ
(1)
3 e3 ζ

(1)
3 β

(1)
3 ζ

(1)
4

δ4 e4 ζ
(1)
4 β4

. . .

. . .
. . .

. . .

ν1 −δ1
ν

(1)
2 e2 −δ(1)2 −e1
e2 ν

(1)
3 −e1 −δ(1)3

ν4 −δ4
. . .

. . .




with

δ
(1)
2 = c21δ2 + s21δ3, e1 = c1s1(δ3 − δ2),
δ
(1)
3 = c21δ3 + s21δ2, e2 = c1s1(ν3 − ν2),
ν

(1)
2 = c21ν2 + s21ν3, e3 = −s1ζ2,
ν

(1)
3 = c21ν3 + s21ν2, e4 = s1ζ4,

ζ
(1)
2 = c1ζ2,

ζ
(1)
4 = c1ζ4,

ζ
(1)
3 = c21ζ3 + c1s1(β3 − β2)− s21ζ3,
β

(1)
2 = c21β2 + 2c1s1ζ3 + s21β3,

β
(1)
3 = c21β3 − 2c1s1ζ3 + s21β2.

The introduction of the initial bulge is completed by H2 = G̃
(1)
1 G̃

(1)
2 H(G̃

(1)
2)T (G̃

(1)
1)T ,

H2 =




δ
(1)
1 b10 b11 β

(1)
1 ζ

(2)
2 b7 b8

b1 δ
(2)
2 b12 ζ

(2)
2 β

(2)
2 ζ

(2)
3 b9

b2 b3 δ
(1)
3 b7 ζ

(2)
3 β

(1)
3 ζ

(1)
4

δ4 b8 b9 ζ
(1)
4 β4

. . .

. . .
. . .

. . .

ν
(1)
1 b4 b5 −δ(1)1 −b1 −b2
b4 ν

(2)
2 b6 −b10 −δ(2)2 −b3

b5 b6 ν
(1)
3 −b11 −b12 −δ(1)3

ν4 −δ4
. . .

. . .




59

with

δ
(1)
1 = c22δ1 + s22δ

(1)
2 , b1 = c2s2(δ

(1)
2 − δ1),

δ
(2)
2 = c22δ

(1)
2 + s22δ1, b2 = s2e1,

ν
(1)
1 = c22ν1 + s22ν

(1)
2 , b3 = c2e1,

ν
(2)
2 = c22ν

(1)
2 + s22ν1, b4 = c2s2(ν

(1)
2 − ν1),

β
(1)
1 = c22β1 + 2c2s2ζ

(1)
2 + s22β

(1)
2 , b5 = s2e2,

β
(2)
2 = c22β

(1)
2 − 2c2s2ζ

(1)
2 + s21β1, b6 = c2e2,

ζ
(2)
2 = (c22 − s22)ζ(1)

2 + c2s2(β
(1)
2 − β1), b7 = c2e3 + s2ζ

(1)
3 ,

ζ
(2)
3 = c2ζ

(1)
3 − s2b3, b8 = s2e4,

b9 = c2ζ
(1)
3 − s2e3,

b10 = b1,
b11 = b2,
b12 = b3.

At this point, the (1, 1) and consequently the (2, 2) block are symmetric, but this is
not forced by the Hamiltonian structure and will soon be lost. Now we will chase the
bulge, that is, we will restore the J-Hessenberg form by applying Algorithm 2.6, that
is a symplectic matrix S2 is constructed such that

H̃ = S2H1S
−1
2 (5.8)

is in J-Hessenberg form. As in the previous two sections, the algorithm simplifies due
to the special structure of H2. First the bulge b5 is eliminated using a symplectic
Givens transformation

G
(1)
3 =




I2
c3 s3

In−3

I2
−s3 c3

In−3




with [c3, s3] = givens(b2, b5). This yields H3 = G
(1)
3 H2(G

(1)
3)T

H3 =




δ
(1)
1 b10 b

(1)
11 β

(1)
1 ζ

(2)
2 b

(1)
7 b8

b1 δ
(2)
2 b

(1)
12 ζ

(2)
2 β

(2)
2 ζ

(3)
3 b9

b
(1)
2 b

(1)
3 δ

(2)
3 b

(1)
7 ζ

(3)
3 β

(2)
3 ζ

(2)
4

bx δ4 b8 b9 ζ
(2)
4 β4 ζ5

δ5 ζ5 β5
. . .

. . .
. . .

. . .

ν
(1)
1 b4 −δ(1)1 −b1 −b(1)2

b4 ν
(2)
2 −b10 −δ(2)2 −b(1)3

ν
(2)
3 −b(1)11 −b(1)12 −δ(2)3 −bx

ν4 −δ4
ν5 −δ5

. . .
. . .




60

with

δ
(2)
3 = (c23 − s23)δ(1)3 + c3s3(ν

(1)
3 + β

(1)
3),

ν
(2)
3 = c23ν

(1)
3 − 2c3s3δ

(1)
3 − s23β(1)

3 ,

β
(2)
3 = c23β

(1)
3 − 2c3s3δ

(1)
3 − s23ν(1)

3 ,

ζ
(3)
3 = c3ζ

(2)
3 − s3b12,

ζ
(2)
4 = c3ζ

(1)
4 ,

b
(1)
2 = c3b2 + s3b5,

b
(1)
3 = c3b3 + s3b6,

b
(1)
7 = c3b7 − s3b11,
b
(1)
11 = c3b11 + s3b7,

b
(1)
12 = c3b12 + s3ζ

(2)
3 ,

bx = s3ζ
(1)
4 .

Due to the choice of G
(1)
3 we have

(H3)n+3,1 = 0

= c3b5 − s3b2
= c3s2e2 − s3s2e1
= s2(c3e2 − s3e1),

that is,

c3e2 − s3e1 = 0, or s2 = 0.

If s2 = 0, then c1x2 + s1x3 = 0 which implies that x2 = x3 = 0. This would imply
ν1ν2ζ2ζ3 = 0, but as we are considering only unreduced Hamiltonian J-Hessenberg
matrices, νj 6= 0 for all j = 1, . . . , n and ζk 6= 0 for all k = 2, . . . , n. Therefore, s2 6= 0.
Moreover,

(H3)n+3,2 = c3b6 − s3b3
= (H3)n+2,3

= c3c2e2 − s3c2e1
= c2(c3e2 − s3e1)
= 0.

Hence, this transformation generates not only one zero, but four of them. Two new
entries are introduced. Moreover, the (1, 1) (and consequently the (2, 2)) block is no
longer symmetric. Next, a symplectic Givens transformation is used to eliminate the

bulge element b
(1)
4

G
(1)
2 =




1
c4 s4

In−2

1
−s4 c4

In−2




61

with [c4, s4] = givens(b1, b4). This yields H4 = G
(1)
2 H3(G

(1)
2)T

H4 =




δ
(1)
1 b

(1)
10 b

(1)
11 β

(1)
1 ζ

(3)
2 b

(1)
7 b8

b
(1)
1 δ

(3)
2 b

(2)
12 ζ

(3)
2 β

(3)
2 ζ

(4)
3 b

(1)
9

b
(1)
2 b

(2)
3 δ

(2)
3 b

(1)
7 ζ

(4)
3 β

(2)
3 ζ

(2)
4

by bx δ4 b8 b
(1)
9 ζ

(2)
4 β4 ζ5

δ5 ζ5 β5
. . .

. . .
. . .

. . .

ν
(1)
1 −δ(1)1 −b(1)1 −b(1)2

ν
(3)
2 b

(1)
4 −b(1)10 −δ(3)2 −b(1)3 −by

b
(1)
4 ν

(2)
3 −b(1)11 −b(2)12 −δ(2)3 −bx

ν4 −δ4
ν5 −δ5

. . .
. . .




with

δ
(3)
2 = (c24 − s24)δ(2)2 + c4s4(ν

(2)
2 + β

(2)
2),

ν
(3)
2 = c24ν

(2)
2 − 2c4s4δ

(2)
2 − s24β(2)

2 ,

β
(3)
2 = c24β

(2)
2 − 2c4s4δ

(2)
2 − s24ν(2)

2 ,

ζ
(3)
2 = c4ζ

(2)
2 − s4b10,

ζ
(4)
3 = c4ζ

(3)
3 − s4b(2)3 ,

b
(1)
1 = c4b1 + s4b4,

b
(2)
3 = c4b

(1)
3 + s4ζ

(3)
3 ,

b
(1)
4 = −s4b(1)12 ,

b
(1)
9 = c4b9,

b
(1)
10 = c4b10 + s4ζ

(2)
2 ,

b
(2)
12 = c4b

(1)
12 ,

by = s4b9.

This transformation creates two additional entries. A symplectic Givens transforma-

tion of type II is used to eliminate b
(2)
2

G̃
(2)
2 =




1
c5 s5
−s5 c5

In−3

1
c5 s5
−s5 c5

In−3




,

62

with [c5, s5] = givens(b
(1)
1 , b

(1)
2). This yields H5 = G̃

(2)
2 H4(G̃

(2)
2)T

H5 =




δ
(1)
1 b

(2)
10 b

(2)
11 β

(1)
1 ζ

(4)
2 b

(2)
7 b8

b
(2)
1 δ

(4)
2 b

(3)
12 ζ

(4)
2 β

(4)
2 ζ

(5)
3 b

(2)
9

b
(3)
3 δ

(3)
3 b

(2)
7 ζ

(5)
3 β

(3)
3 ζ

(3)
4

b
(1)
y b

(1)
x δ4 b8 b

(2)
9 ζ

(3)
4 β4 ζ5

δ5 ζ5 β5
. . .

. . .
. . .

. . .

ν
(1)
1 −δ(1)1 −b(2)1

ν
(4)
2 b

(2)
4 −b(2)10 −δ(4)2 −b(2)3 −b(1)y

b
(2)
4 ν

(3)
3 −b(2)11 −b(3)12 −δ(3)3 −b(1)x

ν4 −δ4
ν5 −δ5

. . .
. . .




with

δ
(4)
2 = c25δ

(3)
2 + c5s5(b

(2)
3 + b

(2)
12) + s25δ

(2)
3 ,

δ
(3)
3 = c25δ

(2)
3 − c5s5(b(2)12 + b

(2)
3) + s25δ

(3)
2 ,

ν
(4)
2 = c25ν

(3)
2 + 2c5s5b

(1)
4 + s25ν

(2)
3 ,

ν
(3)
3 = c25ν

(2)
3 − 2c5s5b

(1)
4 + s25ν

(3)
2 ,

β
(4)
2 = c25β

(3)
2 + 2c5s5ζ

(4)
3 + s25β

(2)
3 ,

β
(3)
3 = c25β

(2)
3 − 2c5s5ζ

(4)
3 + s25β

(3)
2 ,

ζ
(5)
3 = (c25 − s25)ζ(4)

3 + c5s5(β
(2)
3 − β(3)

2),

b
(3)
3 = c25b

(2)
3 + c5s5(δ

(2)
3 − δ(3)2)− s25b(2)12 ,

b
(2)
4 = (c25 − s25)b(1)4 + c5s5(ν

(2)
3 − ν(3)

2),

b
(3)
12 = c25b

(2)
12 + c5s5(δ

(2)
3 − δ(3)2)− s25b(2)3 ,

and

ζ
(4)
2 = c5ζ

(2)
2 + s5b

(1)
7 , b

(2)
1 = c5b

(1)
1 + s5b

(1)
2 ,

ζ
(3)
4 = c5ζ

(2)
4 − s5b(1)9 , b

(2)
7 = c5b

(1)
7 − s5ζ

(3)
2 ,

b
(2)
9 = c5b

(1)
9 + s5ζ

(2)
4 , b

(2)
10 = c5b

(1)
10 + s5b

(1)
11 ,

b
(2)
11 = c5b

(1)
11 − s5b

(1)
10 , b

(1)
x = c5bx − s5by,

b
(1)
y = c5by + s5bx.

No new matrix entries are created. Now a symplectic Gauss transformation L1

L1 =




c6 d6

c6 d6

In−2

c−1
6

c−1
6

In−2




63

where the parameters are chosen by [c6, d6] = gauss1(b
(2)
1 , ν

(1)
1) in order to eliminate

the (2, 1) element is applied, resulting in H6 = L1H5L
−1
1

H6 =




δ
(1)
1 b

(3)
10 b

(3)
11 β

(2)
1 ζ

(5)
2 b

(3)
7 b

(1)
8

δ
(4)
2 b

(4)
12 ζ

(5)
2 β

(5)
2 ζ

(6)
3 b

(3)
9

b
(3)
1 δ

(3)
3 b

(3)
7 ζ

(6)
3 β

(3)
3 ζ

(3)
4

b
(2)
2 b

(4)
3 δ4 b

(1)
8 b

(3)
9 ζ

(3)
4 β4 ζ5

δ5 ζ5 β5
. . .

. . .
. . .

. . .

ν
(2)
1 −δ(1)1

ν
(5)
2 b

(3)
4 −b(3)10 −δ(4)2 −b(3)1 −b(2)2

b
(3)
4 ν

(3)
3 −b(3)11 −b(4)12 −δ(3)3 −b(4)3

ν4 −δ4
ν5 −δ5

. . .
. . .




with

ν
(2)
1 = c−2

6 ν
(1)
1 ,

ν
(5)
2 = c−2

6 ν
(4)
2 ,

β
(2)
1 = c26β

(1)
1 − 2c6d6b

(2)
10 − d2

6ν
(4)
2 ,

β
(5)
2 = c26β

(4)
2 − 2c6d6b

(2)
1 − d2

6ν
(1)
1 ,

ζ
(5)
2 = c26ζ

(4)
2 − c6d6(δ

(1)
1 + δ

(4)
2),

ζ
(6)
3 = c6ζ

(5)
3

b
(3)
1 = c−1

6 b
(3)
3 ,

b
(2)
2 = c−1

6 b(1)y ,

b
(4)
3 = b(1)x ,

b
(3)
4 = c−1

6 b
(2)
4 ,

b
(3)
7 = c6b

(2)
7 − d6b

(3)
3 ,

b
(1)
8 = c6b8 − d6b

(1)
y ,

b
(3)
9 = c6b

(2)
9 ,

b
(3)
10 = b

(2)
10 + c−1

6 d6ν
(4)
2 ,

b
(3)
11 = c6b

(2)
11 + d6b

(2)
4 ,

b
(4)
12 = c6b

(3)
12 .

No new entry is created. The bulge element b
(3)
11 is eliminated by a symplectic Givens

64

transformation G
(2)
3

G
(2)
3 =




I2
c7 s7

In−3

I2
−s7 c7

In−3




with [c7, s7] = givens(b
(3)
7 ,−b(3)11) This yields H7 = G

(2)
3 H6(G

(2)
3)T

H7 =




δ
(1)
1 b

(3)
10 β

(2)
1 ζ

(5)
2 b

(4)
7 b

(1)
8

δ
(4)
2 b

(5)
12 ζ

(5)
2 β

(5)
2 ζ

(7)
3 b

(3)
9

b
(4)
1 δ

(4)
3 b

(4)
7 ζ

(7)
3 β

(4)
3 ζ

(4)
4

b
(2)
2 b

(5)
3 δ4 b

(1)
8 b

(3)
9 ζ

(4)
4 β4 ζ5

δ5 ζ5 β5
. . .

. . .
. . .

. . .

ν
(2)
1 −δ(1)1

ν
(5)
2 b

(4)
4 −b(3)10 −δ(4)2 −b(4)1 −b(2)2

b
(4)
4 ν

(4)
3 −b(5)12 −δ(4)3 −b(5)3

ν4 −δ4
ν5 −δ5

. . .
. . .




with

δ
(4)
3 = (c27 − s27)δ(3)3 + c7s7(ν

(3)
3 + β

(3)
3), b

(4)
1 = c7b

(3)
1 + s7b

(3)
4 ,

ν
(4)
3 = c27ν

(3)
3 − 2c7s7δ

(3)
3 − s27β(3)

3 , b
(5)
3 = c7b

(4)
3 + s7ζ

(3)
4 ,

β
(4)
3 = c27β

(3)
3 − 2c7s7δ

(3)
3 − s27ν(3)

3 , b
(4)
4 = c7b

(3)
4 − s7b

(3)
1 ,

ζ
(7)
3 = c7ζ

(6)
3 − s7b(4)12 , b

(4)
7 = c7b

(3)
7 − s7b

(3)
11 ,

ζ
(4)
4 = c7ζ

(3)
4 − s7b(4)3 , b

(5)
12 = c7b

(4)
12 + s7ζ

(6)
3 .

No new entry is created. The bulge element b
(3)
10 is eliminated by a symplectic Givens

transformation G
(2)
2

G
(2)
2 =




1
c8 s8

In−2

1
−s8 c8

In−2




65

with [c8, s8] = givens(ζ
(5)
2 ,−b(3)10) This yields H8 = G

(2)
2 H7(G

(2)
2)T

H8 =




δ
(1)
1 β

(2)
1 ζ

(6)
2 b

(4)
7 b

(1)
8

δ
(5)
2 b

(6)
12 ζ

(6)
2 β

(6)
2 ζ

(8)
3 b

(4)
9

b
(5)
1 δ

(4)
3 b

(4)
7 ζ

(8)
3 β

(4)
3 ζ

(4)
4

b
(3)
2 b

(5)
3 δ4 b

(1)
8 b

(4)
9 ζ

(4)
4 β4 ζ5

δ5 ζ5 β5
. . .

. . .
. . .

. . .

ν
(2)
1 −δ(1)1

ν
(6)
2 b

(5)
4 −δ(5)2 −b(4)1 −b(3)2

b
(5)
4 ν

(4)
3 −b(6)12 −δ(4)3 −b(5)3

ν4 −δ4
ν5 −δ5

. . .
. . .




with

δ
(5)
2 = (c28 − s28)δ(4)2 + c8s8(ν

(5)
2 + β

(5)
2), b

(5)
1 = c8b

(4)
1 + s8ζ

(7)
3 ,

ν
(6)
2 = c28ν

(5)
2 − 2c8s8δ

(4)
2 − s28β(5)

2 , b
(3)
2 = c8b

(2)
2 + s8b

(3)
9 ,

β
(6)
2 = c28β

(5)
2 − 2c8s8δ

(4)
2 − s28ν(5)

2 , b
(5)
4 = c8b

(4)
4 − s8b

(5)
12 ,

ζ
(6)
2 = c8ζ

(5)
2 − s8b(3)10 , b

(4)
9 = c8b

(3)
9 − s8b

(2)
2 ,

ζ
(8)
3 = c8ζ

(7)
3 − s8b(4)1 , b

(5)
12 = c8b

(4)
12 + s8b

(4)
4 .

Finally, the bulge entries b
(1)
8 and b

(4)
7 can be eliminated by either a symplectic House-

holder transformation or by the product of two symplectic Givens transformations of

type II G̃
(3)
2 G̃

(1)
3 where

G̃
(3)
2 =




1
c10 s10
−s10 c10

In−3

1
c10 s10
−s10 c10

In−3




,

G̃
(1)
3 =




I2
c9 s9
−s9 c9

In−4

I2
c9 s9
−s9 c9

In−4




,

and [c9, s9] = givens(b
(4)
7 , b

(1)
8) and [c10, s10] = givens(ζ

(6)
2 , c9b

(4)
7 + s9b

(1)
8). Applying

66

G̃
(1)
3 yields H9 = G̃

(1)
3 H8(G̃

(1)
3)T

H9 =




δ
(1)
1 β

(2)
1 ζ

(6)
2 b

(5)
7

δ
(5)
2 b

(4)
10 b

(4)
11 ζ

(6)
2 β

(6)
2 ζ

(9)
3 b

(5)
9

b
(6)
1 δ

(5)
3 b

(7)
12 b

(5)
7 ζ

(9)
3 β

(5)
3 ζ

(5)
4 b

(2)
x

b
(4)
2 b

(6)
3 δ

(1)
4 b

(5)
9 ζ

(5)
4 β

(1)
4 ζ

(1)
5

δ5 b
(2)
x ζ

(1)
5 β5

. . .

. . .
. . .

. . .

ν
(2)
1 −δ(1)1

ν
(6)
2 b

(6)
4 b

(1)
5 −δ(5)2 −b(6)1 −b(4)2

b
(6)
4 ν

(5)
3 b

(1)
6 −b(4)10 −δ(5)3 −b(6)3

b
(1)
5 b

(1)
6 ν

(1)
4 −b(4)11 −b(7)12 −δ(1)4

ν5 −δ5
. . .

. . .




with

δ
(5)
3 = c29δ

(4)
3 + c9s9b

(5)
3 + s29δ4,

δ
(1)
4 = c29δ4 − c9s9b(5)3 + s29δ

(4)
3 ,

ν
(5)
3 = c29ν

(4)
3 + s29ν4,

ν
(1)
4 = c29ν4 + s29ν

(4)
3 ,

β
(5)
3 = c29β

(4)
3 + 2c9s9ζ

(4)
4 + s29β4,

β
(1)
4 = c29β4 − 2c9s9ζ

(4)
4 + s29β

(4)
3 ,

ζ
(9)
3 = c9ζ

(8)
3 + s9b

(4)
9 ,

ζ
(5)
4 = (c29 − s29)ζ(4)

4 + c9s9(β4 − β(4)
3),

ζ
(1)
5 = c9ζ5,

b
(6)
1 = c9b

(5)
1 + s9b

(3)
2 ,

b
(4)
2 = c9b

(3)
2 − s9b

(5)
1 ,

b
(6)
3 = c29b

(5)
3 + c9s9(δ4 − δ(4)3),

b
(6)
4 = c9b

(5)
4 ,

b
(1)
5 = −s9b(5)4 ,

b
(1)
6 = c9s9(ν4 − ν(4)

3)

b
(5)
7 = c9b

(4)
7 + s9b

(1)
8 ,

b
(5)
9 = c9b

(4)
9 − s9ζ

(8)
3 ,

b
(4)
10 = c9b

(6)
12 ,

b
(4)
11 = −s9b(6)12 ,

b
(7)
12 = c9s9(δ4 − δ(4)3)− s29b(5)3 ,

b(2)x = s9ζ5.

Applying G̃
(3)
2 yields H10 = G̃

(3)
2 H9(G̃

(3)
2)T

67




δ
(1)
1 β

(2)
1 ζ

(7)
2

δ
(6)
2 b

(5)
10 b

(5)
11 ζ

(7)
2 β

(7)
2 ζ

(10)
3 b

(6)
7 b

(2)
8

b
(7)
1 δ

(6)
3 b

(8)
12 ζ

(10)
3 β

(6)
3 ζ

(6)
4 b

(6)
9

b
(5)
2 b

(7)
3 δ

(1)
4 b

(6)
7 ζ

(6)
4 β

(1)
4 ζ

(1)
5

δ5 b
(2)
8 b

(6)
9 ζ

(1)
5 β5

. . .

. . .
. . .

. . .

ν
(2)
1 −δ(1)1

ν
(7)
2 b

(7)
4 b

(2)
5 −δ(6)2 −b(7)1 −b(5)2

b
(7)
4 ν

(6)
3 b

(2)
6 −b(5)10 −δ(6)3 −b(7)3

b
(2)
5 b

(2)
6 ν

(1)
4 −b(5)11 −b(8)12 −δ(1)4

ν5 −δ5
. . .

. . .




with

δ
(6)
2 = c210δ

(5)
2 + c10s10(b

(6)
1 + b

(4)
10) + s210δ

(5)
3 ,

δ
(6)
3 = c210δ

(5)
3 − c10s10(b(6)1 + b

(4)
10) + s210δ

(5)
2 ,

ν
(7)
2 = c210ν

(6)
2 + 2c10s10b

(6)
4 + s210ν

(5)
3 ,

ν
(6)
3 = c210ν

(5)
3 − 2c10s10b

(6)
4 + s210ν

(6)
2 ,

β
(7)
2 = c210β

(6)
2 + 2c10s10ζ

(9)
3 + s210β

(5)
3 ,

β
(6)
3 = c210β

(5)
3 − 2c10s10ζ

(9)
3 + s210β

(6)
2 ,

ζ
(10)
3 = (c210 − s10)ζ(9)

3 + c10s10(β
(5)
3 − β(6)

2),

b
(7)
1 = c210b

(6)
1 + c10s10(δ

(5)
3 − δ(5)2)− s210b(4)10 ,

b
(7)
4 = (c210 − s210)b(6)4 + c10s10(ν

(5)
3 − ν(6)

2),

b
(5)
10 = c210b

(4)
10 + c10s10(δ

(5)
3 − δ(5)2)− s210b(6)1 ,

and

ζ
(7)
2 = c10ζ

(6)
2 + s10b

(5)
7 , b

(5)
2 = c10b

(4)
2 + s10b

(6)
3 ,

ζ
(6)
4 = c10ζ

(5)
4 − s10b(5)9 , b

(7)
3 = c10b

(6)
3 − s10b

(5)
2 ,

b
(2)
5 = c10b

(1)
5 + s10b

(1)
6 , b

(2)
6 = c10b

(1)
6 − s10b

(1)
5 ,

b
(6)
7 = c10b

(5)
9 + s10ζ

(5)
4 , b

(2)
8 = s10b

(2)
x ,

b
(6)
9 = c10b

(2)
x , b

(5)
11 = c10b

(4)
11 + s10b

(7)
12 ,

b
(8)
12 = c10b

(7)
12 − s10b

(4)
11 .

This is the situation as in H2, just the bulge has moved one row and one column
down in each of the blocks. Note, that the (1, 1) block was symmetric in H2, here in

H10 it is no longer symmetric. The entries δ
(1)
1 , β

(2)
1 and ν

(2)
1 will not be changed in the

rest of the computation, they already belong to the parameter set which determines
H̃ (5.8),

δ̃1 = δ
(1)
1 , β̃1 = β

(2)
1 , ν̃1 = ν

(2)
1 .

68

As in the single and the double shift case, let us consider one more step of the bulge
chasing process in order to derive an algorithm that works only on the parameters.

Next, the bulge b
(2)
5 is eliminate using a symplectic Givens transformation

G
(1)
4 =




I3
c11 s11

In−2

I3
−s11 c11

In−2




with [c11, s11] = givens(b
(5)
2 , b

(2)
5). This yields H11 = G

(1)
4 H10(G

(1)
4)T




δ̃1 β̃1 ζ
(7)
2

δ
(6)
2 b

(5)
10 b

(6)
11 ζ

(7)
2 β

(7)
2 ζ

(10)
3 b

(7)
7 b

(2)
8

b
(7)
1 δ

(6)
3 b

(9)
12 ζ

(10)
3 β

(6)
3 ζ

(7)
4 b

(6)
9

b
(6)
2 b

(8)
3 δ

(2)
4 b

(7)
7 ζ

(7)
4 β

(2)
4 ζ

(2)
5

b
(3)
x δ5 b

(2)
8 b

(6)
9 ζ

(2)
5 β5

. . .

. . .
. . .

. . .

ν̃1 −δ̃1
ν

(7)
2 b

(7)
4 −δ(6)2 −b(7)1 −b(6)2

b
(7)
4 ν

(6)
3 b

(3)
6 −b(5)10 −δ(6)3 −b(8)3

b
(3)
6 ν

(2)
4 −b(6)11 −b(9)12 −δ(2)4 −b(3)x

ν5 −δ5
. . .

. . .




with

δ
(2)
4 = (c211 − s211)δ(1)4 + c11s11(ν

(1)
4 + β

(1)
4), b

(6)
2 = c11b

(5)
2 + s11b

(2)
5 ,

ν
(2)
4 = c211ν

(1)
4 − 2c11s11δ

(1)
4 − s211β(1)

4 , b
(8)
3 = c11b

(7)
3 + s11b

(2)
6 ,

β
(2)
4 = c211β

(1)
4 − 2c11s11δ

(1)
4 − s211ν(1)

4 , b
(3)
6 = c11b

(2)
6 − s11b

(7)
3 ,

ζ
(7)
4 = c11ζ

(6)
4 − s11b(8)12 , b

(1)
7 = c11b

(6)
7 − s11b

(5)
11 ,

ζ
(2)
5 = c11ζ

(1)
5 , b

(6)
11 = c11b

(5)
11 + s11b

(6)
7 ,

b
(9)
12 = c11b

(8)
12 + s11ζ

(6)
4 ,

b
(3)
x = s11ζ

(1)
5 .

All the computations are the same as for computing H3, just the indices of the pa-
rameters δ, ν, β, ζ have to be increased by one. While in H3 the bulge entry, due to

the special problem set up, b
(1)
6 was zero, here b

(3)
6 6= 0. Hence, we need to be careful

in the next reduction step as b
(3)
6 will enter the computation and alter the formula we

obtained for H4 slightly.

Next, a symplectic Givens transformation is used to eliminate the bulge element

69

b
(7)
4

G
(3)
3 =




I2
c12 s12

In−3

I2
−s12 c12

In−3




with [c12, s12] = givens(b
(7)
1 , b

(7)
4). This yields H12 = G

(3)
3 H11(G

(3)
3)T




δ̃1 β̃1 ζ
(7)
2

δ
(6)
2 b

(6)
10 b

(6)
11 ζ

(7)
2 β

(7)
2 ζ

(11)
3 b

(7)
7 b

(2)
8

b
(8)
1 δ

(7)
3 b

(10)
12 ζ

(11)
3 β

(7)
3 ζ

(8)
4 b

(7)
9

b
(6)
2 b

(9)
3 δ

(2)
4 b

(7)
7 ζ

(8)
4 β

(2)
4 ζ

(2)
5

b
(2)
y b

(3)
x δ5 b

(2)
8 b

(7)
9 ζ

(2)
5 β5

. . .

. . .
. . .

. . .

ν̃1 −δ̃1
ν

(7)
2 −δ(6)2 −b(8)1 −b(6)2

ν
(7)
3 b

(8)
4 −b(6)10 −δ(7)3 −b(9)3 −b(2)y

b
(8)
4 ν

(3)
4 −b(6)11 −b(10)12 −δ(2)4 −b(3)x

ν5 −δ5
. . .

. . .




with

δ
(7)
3 = (c212 − s212)δ(6)3 + c12s12(ν

(6)
3 + β

(6)
3), b

(8)
1 = c12b

(7)
1 + s12b

(7)
4 ,

ν
(6)
3 = c212ν

(6)
3 − 2c12s12δ

(6)
3 − s212β(6)

3 , b
(9)
3 = c12b

(8)
3 + s12ζ

(7)
4 ,

β
(7)
3 = c212β

(6)
3 − 2c12s12δ

(6)
3 − s212ν(6)

3 , b
(8)
4 = c12b

(3)
6 − s12b

(9)
12 ,

ζ
(11)
3 = c12ζ

(10)
3 − s12b(5)10 , b

(7)
9 = c12b

(8)
9 ,

ζ
3)
4 = c12ζ

(2)
4 − s12b(8)3 , b

(6)
10 = c12b

(5)
10 + s12ζ

(10)
3 ,

b
(10)
12 = c12b

(10)
12 + s12b

(3)
6 ,

by = s12b
(8)
9 .

As before, this transformation creates two additional entries. The computations of
the bulge elements b4 and b12 differ from the computation of H4 due to the fact that
in the previous step, b6 did not vanish.

A symplectic Givens transformation of type II is used to eliminate b
(6)
2

G̃
(1)
3 =




I2
c13 s13
−s13 c13

In−4

I2
c13 s13
−s13 c13

In−4




,

70

with [c13, s13] = givens(b
(8)
1 , b

(6)
2). This yields H13 = G̃

(1)
3 H12(G̃

(1)
3)T




δ̃1 β̃1 ζ
(7)
2

δ
(6)
2 b

(7)
10 b

(7)
11 ζ

(7)
2 β

(7)
2 ζ

(12)
3 b

(8)
7 b

(2)
8

b
(9)
1 δ

(8)
3 b

(11)
12 ζ

(12)
3 β

(8)
3 ζ

(9)
4 b

(8)
9

b
(10)
3 δ

(3)
4 b

(8)
7 ζ

(9)
4 β

(3)
4 ζ

(3)
5

b
(3)
y b

(4)
x δ5 b

(2)
8 b

(8)
9 ζ

(3)
5 β5

. . .

. . .
. . .

. . .

ν̃1 −δ̃1
ν

(7)
2 −δ(6)2 −b(9)1

ν
(8)
3 b

(9)
4 −b(7)10 −δ(8)3 −b(10)3 −b(3)y

b
(9)
4 ν

(4)
4 −b(7)11 −b(11)12 −δ(3)4 −b(4)x

ν5 −δ5
. . .

. . .




with

δ
(8)
3 = c213δ

(7)
3 + c13s13(b

(9)
3 + b

(10)
12) + s213δ

(2)
4 ,

δ
(3)
4 = c213δ

(2)
4 − c13s13(b(10)12 + b

(9)
3) + s213δ

(7)
3 ,

ν
(8)
3 = c213ν

(7)
3 + 2c13s13b

(8)
4 + s213ν

(3)
4 ,

ν
(4)
4 = c213ν

(3)
4 − 2c13s13b

(8)
4 + s213ν

(7)
3 ,

β
(8)
3 = c213β

(7)
3 + 2c13s13ζ

(8)
4 + s213β

(2)
4 ,

β
(3)
4 = c213β

(2)
4 − 2c13s13ζ

(8)
4 + s213β

(7)
3 ,

ζ
(9)
4 = (c213 − s213)ζ(8)

4 + c13s13(β
(2)
4 − β(7)

3),

b
(10)
3 = c213b

(9)
3 + c13s13(δ

(2)
4 − δ(7)3)− s213b(10)12 ,

b
(9)
4 = (c213 − s213)b(8)4 + c13s13(ν

(3)
4 − ν(7)

3),

b
(11)
12 = c213b

(10)
12 + c13s13(δ

(2)
4 − δ(7)3)− s213b(9)3 ,

and

ζ
(12)
3 = c13ζ

(11)
3 + s13b

(7)
7 , b

(9)
1 = c13b

(8)
1 + s13b

(6)
2 ,

ζ
(3)
5 = c13ζ

(2)
5 − s13b(7)9 , b

(8)
7 = c13b

(7)
7 − s13ζ

(11)
3 ,

b
(8)
9 = c13b

(7)
9 + s13ζ

(2)
5 , b

(7)
10 = c13b

(6)
10 + s13b

(6)
11 ,

b
(7)
11 = c13b

(6)
11 − s13b

(16
10 , b

(4)
x = c13b

(3)
x − s13b(2)y ,

b
(3)
y = c13b

(2)
y + s13b

(3)
x .

No new matrix entries are created. The computation is just as in the computation of
H5, only the indices of all parameters have to be increased by one.

71

Now a symplectic Gauss transformation L2

L2 =




1
c14 d14

c14 d14

In−3

1
c−1
14

c−1
14

In−3




where the parameters are chosen by [c14, d14] = gauss1(b
(9)
1 , ν

(7)
2) in order to elimi-

nate the (2, 1) element is applied, resulting in H14 = L2H13L
−1
2




δ̃1 β̃1 ζ
(8)
2

δ
(6)
2 b

(8)
10 b

(8)
11 ζ

(8)
2 β

(8)
2 ζ

(13)
3 b

(9)
7 b

(3)
8

δ
(8)
3 b

(12)
12 ζ

(13)
3 β

(9)
3 ζ

(10)
4 b

(9)
9

b
(10)
1 δ

(3)
4 b

(9)
7 ζ

(10)
4 β

(3)
4 ζ

(3)
5

b
(7)
2 b

(11)
3 δ5 b

(3)
8 b

(9)
9 ζ

(3)
5 β5

. . .

. . .
. . .

. . .

ν̃1 −δ̃1
ν

(8)
2 −δ(6)2

ν
(9)
3 b

(10)
4 −b(8)10 −δ(8)3 −b(10)1 −b(7)2

b
(10)
4 ν

(5)
4 −b(8)11 −b(12)12 −δ(3)4 −b(11)3

ν5 −δ5
. . .

. . .




with

ν
(8)
2 = c−2

14 ν
(7)
2 , b

(10)
1 = c−1

14 b
(10)
3 ,

ν
(9)
3 = c−2

14 ν
(8)
3 , b

(7)
2 = c−1

14 b
(3)
y ,

β
(8)
2 = c214β

(7)
2 − 2c14d14b

(7)
10 − d2

14ν
(8)
3 , b

(11)
3 = b

(1)
x ,

β
(9)
3 = c214β

(8)
3 − 2c14d14b

(9)
1 − d2

14ν
(7)
2 , b

(10)
4 = c−1

14 b
(9)
4 ,

ζ
(8)
2 = c14ζ

(7)
2 , b

(9)
7 = c14b

(8)
7 − d14b

(10)
3 ,

ζ
(13)
3 = c214ζ

(12)
3 − c14d14(δ

(6)
2 + δ

(8)
3), b

(3)
8 = c14b

(2)
8 − d14b

(3)
y ,

ζ
(10)
4 = c14ζ

(9)
4 b

(9)
9 = c14b

(8)
9 ,

b
(8)
10 = b

(7)
10 + c−1

14 d14ν
(8)
3 ,

b
(8)
11 = c14b

(7)
11 + d14b

(9)
4 ,

b
(12)
12 = c14b

(11)
12 .

No new entry is created. The only difference to the computation of H6 is (upto
increasing the indices of all parameters by one) the change of the parameter ζ2.

The final 4 transformations which ensure that the bulge will move one row and
column further down the diagonal in each of the four blocks do not reveal any new
computations, therefore we refrain from stating them explicitly. After these transfor-
mations, the bulge has moved further down, the parameters δ̃2, β̃2, ζ̃2 and ν̃2 of the
final H̃ can be read off.

72

From the given reduction it is easy to derive an algorithm that computes the
parameters of H̃ one set (that is, δ̃j+1, β̃j , ζ̃j , ν̃j) at a time given the parameters of H .
In order to do so, take all the formulae needed for the computing of H11, H12, H13,
and H14 and change the indices of the parameters in the following way

3→ j + 1, 4→ j + 2, 5→ j + 3,

the indices of the bulge entries do not change. Next take all the formulae needed for
the computing of H7, H8, H9, and H10 and change the indices of the parameters in
the following way

2→ j + 1, 3→ j + 2, 4→ j + 3,

as before, the indices of the bulge entries do not change.

One has to be careful when the final columns are treated, as there is no ζn+1 and
the bulge will be chased out of the matrix. Assume that we have achieved




. . .
. . .

x x x

x ⊕ ⊕ x x x ⊕ ⊕

⊕ x ⊕ x x x ⊕

⊕ ⊕ x ⊕ x x x

x ⊕ ⊕ x x

. . .
. . .

x x

x ⊕ ⊕ x ⊕ ⊕

⊕ x ⊕ ⊕ x ⊕

⊕ ⊕ x ⊕ ⊕ x

x x




,

where for notional simplicity the bulge entries are denoted by ⊕ and all other entries
by x. The parameterized algorithm for moving the bulge obtained above applies the
following sequence of transformations:

• a symplectic Givens transformationGn−1 to eliminate the entry (2n−1, n−3)




. . .
. . .

x x x

x ⊕ ⊕ x x x ⊕ ⊕

⊕ x ⊕ x x x ⊕

⊕ ⊕ x ⊕ x x x

⊕ x ⊕ ⊕ x x

. . .
. . .

x x

x ⊕ x ⊕ ⊕

⊕ x ⊕ ⊕ x ⊕

⊕ x ⊕ ⊕ x ⊕

x x




,

73

• a symplectic Givens transformationGn−2 to eliminate the entry (2n−2, n−3)




. . .
. . .

x x x

x ⊕ ⊕ x x x ⊕ ⊕

⊕ x ⊕ x x x ⊕

⊕ ⊕ x ⊕ x x x

⊕ ⊕ x ⊕ ⊕ x x

. . .
. . .

x x

x x ⊕ ⊕

x ⊕ ⊕ x ⊕ ⊕

⊕ x ⊕ ⊕ x ⊕

x x




,

• a symplectic Givens transformation of type II G̃n−2 to eliminate the entry
(n− 1, n− 3)




. . .
. . .

x x x

x ⊕ ⊕ x x x ⊕ ⊕

⊕ x ⊕ x x x ⊕

⊕ x ⊕ x x x

⊕ ⊕ x ⊕ ⊕ x x

. . .
. . .

x x

x x ⊕

x ⊕ ⊕ x ⊕ ⊕

⊕ x ⊕ ⊕ x ⊕

x x




,

• a symplectic Gauss transformation Ln−2 to eliminate the entry (n− 2, n− 3)




. . .
. . .

x x x

x ⊕ ⊕ x x x ⊕ ⊕

x ⊕ x x x ⊕

⊕ x ⊕ x x x

⊕ ⊕ x ⊕ ⊕ x x

. . .
. . .

x x

x x

x ⊕ ⊕ x ⊕ ⊕

⊕ x ⊕ ⊕ x ⊕

x x




,

74

• a symplectic Givens transformationGn−1 to eliminate the entry (2n−1, 2n−3)




. . .
. . .

x x x

x ⊕ x x x ⊕ ⊕

x ⊕ x x x ⊕

⊕ x ⊕ x x x

⊕ ⊕ x ⊕ ⊕ x x

. . .
. . .

x x

x x

x ⊕ ⊕ x ⊕ ⊕

⊕ x ⊕ x ⊕

x x




,

• a symplectic Givens transformationGn−2 to eliminate the entry (2n−2, 2n−3)




. . .
. . .

x x x

x x x x ⊕ ⊕

x ⊕ x x x ⊕

⊕ x ⊕ x x x

⊕ ⊕ x ⊕ ⊕ x x

. . .
. . .

x x

x x

x ⊕ x ⊕ ⊕

⊕ x ⊕ x ⊕

x x




.

All of these computations are identical to the previously derived formulae. The final
two transformation generate the ’next’ bulge, some of the bulge entries already ’leave’
the matrix, moreover there is no ζn+1. Therefore, when applying

• a symplectic Givens transformation of type II G̃n−1 to eliminate the entry
(n, n− 3)




. . .
. . .

x x x

x x x x ⊕

x ⊕ ⊕ x x x ⊕

⊕ x ⊕ ⊕ x x x

⊕ ⊕ x ⊕ x x

. . .
. . .

x x

x x

x ⊕ ⊕ x ⊕ ⊕

⊕ x ⊕ ⊕ x ⊕

⊕ ⊕ x ⊕ ⊕ x




,

there are no bx and ζn+1,

75

• while when applying a symplectic Givens transformation of type II G̃n−2 to
eliminate the entry (n− 1, n− 3)




. . .
. . .

x x x

x x x x

x ⊕ ⊕ x x x ⊕

⊕ x ⊕ x x x

⊕ ⊕ x ⊕ x x

. . .
. . .

x x

x x

x ⊕ ⊕ x ⊕ ⊕

⊕ x ⊕ ⊕ x ⊕

⊕ ⊕ x ⊕ ⊕ x




,

there are no b8 and b9.

The bulge has moved one row and one column further down. As it is been chased
out of the matrix, its size has already decreased by 4 elements. In all subsequent
computations the computation of b8, b9 and ζn+1 is not necessary.

For the next iteration step, we list the transformations and which bulge entries
’leave’ the matrix and do not need to be considered further. Following the general
derivation of an implicit quadruple SR step as described above the following sequence
of transformation is applied

• a symplectic Givens transformation Gn to eliminate the entry (2n, n− 2)




. . .
. . .

x x x

x x x x

x ⊕ ⊕ x x x ⊕

⊕ x ⊕ x x x

⊕ ⊕ x ⊕ x x

. . .
. . .

x x

x x

x ⊕ x ⊕ ⊕

⊕ x ⊕ ⊕ x ⊕

⊕ x ⊕ ⊕ x




,

76

• a symplectic Givens transformationGn−1 to eliminate the entry (2n−1, n−2)




. . .
. . .

x x x

x x x x

x ⊕ ⊕ x x x ⊕

⊕ x ⊕ x x x

⊕ ⊕ x ⊕ x x

. . .
. . .

x x

x x

x x ⊕ ⊕

x ⊕ ⊕ x ⊕

⊕ x ⊕ ⊕ x




,

there are no by and b9,
• a symplectic Givens transformation of type II Gn−1 to eliminate the entry

(n, n− 2)




. . .
. . .

x x x

x x x x

x ⊕ ⊕ x x x ⊕

⊕ x ⊕ x x x

⊕ x ⊕ x x

. . .
. . .

x x

x x

x x ⊕

x ⊕ ⊕ x ⊕

⊕ x ⊕ ⊕ x




,

• a symplectic Gauss transformation Ln−1 to eliminate the entry (n− 1, n− 2)




. . .
. . .

x x x

x x x x

x ⊕ ⊕ x x x ⊕

x ⊕ x x x

⊕ x ⊕ x x

. . .
. . .

x x

x x

x x

x ⊕ ⊕ x ⊕

⊕ x ⊕ ⊕ x




,

there are no b2, b3, and b8

77

• a symplectic Givens transformation Gn to eliminate the entry (2n, 2n− 2)




. . .
. . .

x x x

x x x x

x ⊕ x x x ⊕

x ⊕ x x x

⊕ x ⊕ x x

. . .
. . .

x x

x x

x x

x ⊕ ⊕ x ⊕

⊕ x ⊕ x




,

• a symplectic Givens transformationGn−1 to eliminate the entry (2n−1, 2n−2)




. . .
. . .

x x x

x x x x

x x x x ⊕

x ⊕ x x x

⊕ x ⊕ x x

. . .
. . .

x x

x x

x x

x ⊕ x ⊕

⊕ x ⊕ x




,

• a transformation G̃n is not needed, therefore in the next step we have to be
careful as the missing transformation corresponds to the one generating H9

from H8 which relabels the bulge entries,
• a symplectic Givens transformation of type II G̃n−1 to eliminate the entry

(n, 2n− 2)




. . .
. . .

x x x

x x x x

x x x x

x ⊕ x x x

⊕ x x x

. . .
. . .

x x

x x

x x

x ⊕ x ⊕

⊕ x ⊕ x




,

there are no b5, b6, b7, b11, b12, and δn+1,
• a transformation Gn+1 is not needed.

78

The bulge has been moved once again. It consists of only four elements. Note that
the (1, 2)-block is already in the desired form. In order to account for the missing
relabeling of the bulge entries, the last transformation performed has to be modified
as follows: we have obtained




. . .
. . .

δn−2 βn−2 ζn−1 b7
δn−1 b12 ζn+1 βn−1 ζn
b1 δn b7 ζn βn

. . .
. . .

νn−2 −δn−2

νn−1 b4 −δn−1 −b1
b4 νn −b12 −δn




,

applying the transformation G̃n−1 gives




. . .
. . .

δn−2 βn−2 ζn−1

δn−1 b10 ζn+1 βn−1 ζn
b1 δn ζn βn

. . .
. . .

νn−2 −δn−2

νn−1 b4 −δn−1 −b1
b4 νn −b10 −δn




,

where the formulae for b1, b10 and δn−1 have to be modified slightly, all other entries
change as before.

Following the general derivation of an implicit quadruple SR step as described
above the following sequence of transformation is applied to drive the bulge out of
the matrix

• a transformation Gn is not needed,
• a symplectic Givens transformation Gn to eliminate the entry (2n, n− 1)




. . .
. . .

x x x

x x x x

x x x x

x ⊕ x x x

⊕ x x x

. . .
. . .

x x

x x

x x

x x ⊕

x ⊕ x




,

• a transformation G̃n is not needed

79

• a symplectic Gauss transformation Ln to eliminate the entry (n, n− 1)



. . .
. . .

x x x

x x x x

x x x x

x ⊕ x x x

x x x

. . .
. . .

x x

x x

x x

x x

x ⊕ x




,

• a transformation Gn+1 is not needed
• a symplectic Givens transformation Gn to eliminate the entry (2n, 2n− 1)




. . .
. . .

x x x

x x x x

x x x x

x x x x

x x x

. . .
. . .

x x

x x

x x

x x

x x




,

there is no b1.
The bulge has been chased out of the matrix, the final two transformations are not
needed here. The non-parameterized version of the algorithm is summarized in Ta-
ble 5.3. A corresponding Matlab programme called param sr implicit quadruple

working only on the parameters is given in Appendix B. The implicit quadruple SR
step working on the parameters only requires O(n) flops. As the entire process works
only on the parameters which determine the Hamiltonian matrix, the Hamiltonian
structure is forced in every step of the algorithm.

6. Solving the 2 × 2 and 4 × 4 subproblems. We proceed with the SR it-
eration until the problem has completely decoupled into Hamiltonian J-Hessenberg
subproblems of size 2 × 2 or 4 × 4; that is, at least every second ζj in Ĥ = S−1HS
is neglectably small. In a final step we now have to transform each of these subprob-
lems into a form from which the eigenvalues can be read off. In order to do so, each
subproblem is transformed into Hamiltonian Schur form HSchur by an orthogonal
symplectic transformation

HSchur =

[
T N
0 −T T

]
,

where N is symmetric and T is a block upper triangular matrix with 1 × 1 or 2 × 2
blocks on the diagonal. This has already been discussed in [38] for the case that

80

Algorithm: Quadruple shift implicit SR step

Given a 2n×2n Hamiltonian matrix A in J-Hessenberg form compute a quadru-
ple shift implicit SR step. That is, given either a complex shift γ ∈ C,
Re(γ) 6= 0 or two shifts µ and η (either real or purely imaginary), the symplec-
tic matrix S of the SR decomposition (A − µI)(A + µI)(A − ηI)(A + ηI) (in
case the shift γ ∈ C is given, µ = γ, η = γ) is computed implicitly. A will be
overwritten by its J–Hessenberg form.

x1 = (δ21 + ν1β1 − η2)(δ21 + ν1β1 − µ2) + ν1ν2ζ
2
2

x2 = ν1ζ2[(δ
2
1 + ν1β1 − η2) + δ22 + ν2β2 − µ2]

x3 = ν1ν2ζ2ζ3
compute G̃2 such that G̃2(x2e2 + x3e3) = α1e2
A = G̃2AG̃

T
2

S = G̃2

compute G̃1 such that G̃1(x1e1 + α1e2) = α2e1
A = G̃1AG̃

T
1

S = G̃1S
for j = 1 : n− 1

for k = min(n, j + 2) : −1 : j + 1
compute Gk such that (GkA)k+n,j = 0
A = GkAG

T
k

end
if j < n− 1
then compute G̃j+1 such that (G̃j+1A)j+2,j = 0

A = G̃j+1AG̃
T
j+1

end
if Aj+1,j 6= 0 and An+j,n+j = 0
then stop, reduction does not exist
end
compute Lj+1 such that (Lj+1A)j+1,j = 0
A = Lj+1AL

−1
j+1

for k = min(n, j + 2) : −1 : j + 1
compute Gk such that (GkA)n+k,n+j = 0
A = GkAG

T
k

end
if j < n− 1
then compute Hj such that (HjA)j+2:min(j+3,n),n+j = 0

A = HjAH
T
j

end
end

Table 5.3
Quadruple shift implicit SR step

the Hamiltonian matrix has no purely imaginary eigenvalues. In that paper, the SR
algorithm is used to solve complete stable eigenproblems, this implies that the 2×2 and
4 × 4 subproblems have no purely imaginary eigenvalues. This cannot be assumed

81

here. Even if the original Hamiltonian matrix H does not have purely imaginary
eigenvalues, the projected much smaller Hamiltonian J-Hessenberg matrix computed
by the symplectic Lanczos method for Hamiltonian matrices may have some. When
possible, the results from [38] are used. The cases not considered in [38] are discussed
here in detail.

Let us start with the 2× 2 subproblems. They are of the form

H2×2 =

[
δj βj
νj −δj

]
.

The characteristic polynomial is given by

det(H2×2 − λI) = λ2 − (δ2j + βjνj).

Hence, the eigenvalues are

±λ = ±
√
δ2j + βjνj .

In case the eigenvalues are real that is, if δ2j + βjνj > 0, there are two options to
transform H2×2 into upper triangular form. Either the positive eigenvalue λ is put
into the (1, 1) position

[
λ x
−λ

]
,

or the negative one

[
−λ x

λ

]
.

As for most applications the stable invariant subspace is sought, we choose the latter
option. Please note, that we do not assume that the Hamiltonian eigenproblem to be
solved has no purely imaginary eigenvalues. Hence, a stable invariant subspace might
not exist. In order to put the negative eigenvalue in the (1, 1) position, compute a
2× 2 Givens transformation

Q =





√
(δj − λ)2 + ν2

j

−1
[
δj − λ −νj
νj δj − λ

]
if λ 6= δj and νj 6= 0,

I if λ = −δj and νj = 0,√
(4δ2j + β2

j

−1
[
βj −2δj
2δj βj

]
if λ = δj and νj = 0.

Q is orthogonal and symplectic and

QTH2×2Q =

[
−λ x

λ

]
.

Lifting Q into the (j, n+ j)th plane of a corresponding 2n×2n orthogonal symplectic

Givens matrix G and transforming Ĥ with G will eliminate νj and put −λ in the

(j, j) position of GT ĤG. Therefore, SG contains in its jth column the eigenvector
corresponding to −λ which belongs to the stable invariant subspace (if there exists
one).

82

Remark 6.1. In [145], it is suggested to further reduce the 2×2 problem by using
the symplectic transformation

Q′ =

[
1
2λ x

2λ

]
,

which transforms QTH2×2Q into diagonal form

Q′−1QTH2×2QQ
′ =

[
−λ

λ

]
.

This allows to read off the eigenvectors to both eigenvalues, but, depending on λ this
additional transformation may increase the numerical instability of the SR algorithm.

This additional transformation is not necessary as both eigenvectors can be read
off directly from

[
−λ x

λ

]
.

The eigenvector corresponding to −λ is e1 = [1, 0]T , the eigenvector corresponding
to λ is

[
x
2λ

]
.

In case the eigenvalues are purely imaginary (that is, if δ2j + βjνj < 0) nothing
needs to be done. If one is interested in at least one eigenvector corresponding to
the pair of imaginary eigenvalues, then H2×2 has to be transformed into its canonical
Schur form

Hfinal =

[
0 ±β
∓β 0

]
.

From

H [x y] = [x y]Hfinal, x, y ∈ R
2n

we obtain with z = x+ iy for the case Hx = −βy,Hy = βx

Hz = iβz,

and just as for the case Hx = βy,Hy = −βx

Hz = −iβz.

Hence, an eigenvector can be read off; the eigenvector to the other eigenvalue is z.
There exists an orthogonal Givens transformation such that

[
c −s
s c

] [
δj βj
νj −δj

] [
c s
−s c

]
=

[
0 d
b 0

]
, (6.1)

where b, d ∈ R, bd < 0 and λ = ±iβ = ±
√
bd = ±

√
δ2j + βjνj . Equating the (1, 1)

and the (2, 2) entry of both sides of the equation, yields

(c2 − s2)δj − cs(βj + νj) = 0.

83

Dividing by c2δj and introducing the new unknown t = s
c = sin(ψ)

cos(ψ) = tan(ψ) and

τ = (βj + νj)/(2δj) we obtain

t2 + 2τt− 1 = 0.

Choosing

t =
sign(τ)

|τ |+
√

1 + τ2
, c =

1√
1 + t2

, s = ct

determines the transformation. For a numerical sound implementation of this step,
see, e.g., the LAPACK routine lanev2f [4]. In our actual implementation, we use
Matlab’s schur function for solving the 2 × 2 problem in case there are purely
imaginary eigenvalues, as this will compute (6.1) right away.

If in (6.1), b < 0 and d > 0, then the transformation

[
1/x

x

] [
0 d
b 0

] [
x

1/x

]
=

[
0 β
−β 0

]
, x =

√
−β/b (6.2)

puts (6.1) into its canonical Schur form. Note, that the transformation matrix is
symplectic. If in (6.1), b > 0 and d < 0, then the transformation

[
1/x

x

] [
0 d
b 0

] [
x

1/x

]
=

[
0 −β
β 0

]
, x =

√
β/b (6.3)

puts (6.1) into its canonical Schur form.

Remark 6.2. In case, a different ordering of the eigenvalues on the diagonal is
desired, a reordering of the eigenvalues is possible later using the idea presented in
[65, Chapter 7.6.2]. Suppose

H ′ =

[
λ1 h12

0 λ2

]
,

and that we wish to reverse the order of the eigenvalues. Note that H ′x = λ2x where

x =

[
h12

λ2 − λ1

]
.

Let QD be a Givens rotation such that the second component of QTDx is zero. Then

QTDH
′(QDe1) = λ2Q

T
D(QDe1) = λ2e1

and so QTDH
′QD must be of the form

QTDH
′QD =

[
λ2 ±h12

0 λ1

]
.

Now, let us turn to the 4× 4 subproblems. They are of the form

H4×4 =




δj 0 βj ζj+1

0 δj+1 ζj+1 βj+1

νj 0 −δj 0
0 νj+1 0 −δj+1


 , ζj+1 6= 0.

84

The characteristic polynomial is given by

det(H4×4 − λI) = λ4 − (δ2j + δ2j+1 + βjνj + βj+1νj+1)λ
2

+ δ2j δ
2
j+1 + δ2jβj+1νj+1 + δ2j+1βjνj + νjνj+1βjβj+1 − νjνj+1ζ

2
j+1

= λ4 − (aj + aj+1)λ
2 + ajaj+1 − νjνj+1ζ

2
j+1,

where we used as before

aj = δ2j + νjβj .

Hence, the eigenvalues are given as

λ1/2/3/4 = ±

√√√√−aj + aj+1

2
±

√(
aj + aj+1

2

)2

− ajaj+1 + νjνj+1ζ2
j+1

= ±

√√√√−aj + aj+1

2
±

√(
aj − aj+1

2

)2

+ νjνj+1ζ2
j+1.

In case the term under the inner square root is nonnegative,

θj :=

(
aj − aj+1

2

)2

+ νjνj+1ζ
2
j+1 ≥ 0,

there will be just real or purely imaginary eigenvalues and only if θj is negative, there
will be complex eigenvalues with nonnegative real part. Obviously, in case νj or νj+1

is zero (or both of them), the eigenvalues will be real or purely imaginary, but never
complex with nonzero real part. As this is easily detected by inspecting the matrix
entries, we will deal with both cases separately (in contrast to [38]).

First, let us assume that θj < 0. This implies that νjνj+1 6= 0. Let λ and µ = λ
be the eigenvalues with positive real part. Then

H ′
4×4 = (H4×4 − λI)(H4×4 − µI)

=




(δj − λ)(δj − µ) + βjνj νj+1ζj+1 x x
νjζj+1 (δj+1 − λ)(δj+1 − µ) + βj+1νj+1 x x

−(λ+ µ)νj 0 x x
0 −(λ+ µ)νj+1 x x




=




h11 h12 x x
h21 h22 x x
h31 0 x x
0 h42 x x




is a real matrix of rank 2 (here only the entries we are interested in are given explic-
itly). As νjνj+1 6= 0, the entries in positions (3, 1), (2, 1) and (4, 2) of H ′

4×4 can be
eliminated by premultiplying with an appropriate sequence of orthogonal symplectic
transformations (a Givens transformation G1 = G(1, c1, s1) followed by a Givens type

II transformation G̃1 = G̃(1, c2, s2) and a Givens transformation G2, resp.), then the

85

result will be of the form

QTH ′
4×4 = GT2 G̃

T
1G

T
1 H

′
4×4

= GT2 G̃
T
1




c1h11 − s1h31 c1h12 x x
h21 h22 x x
0 s1h12 x x
0 h42 x x


 , c1h31 + s1h11 = 0,

= GT2




x x x x
0 s2c1h12 + c2h22 x x
0 c2s1h12 − s2h42 x x
0 s2s1h12 + c2h42 x x


 , c2h21 + s2(c1h11 − s1h31) = 0,

where

c2s1h12 − s2h42 = −
√
h2

11 + h2
31√

y

h31√
h2

11 + h2
31

h12 +
h21√
y
h42

=
h21h42 − h31h12√

y

= 0,

as

c1 = h11/
√
h2

11 + h2
31,

s1 = −h31/
√
h2

11 + h2
31,

c2 = (c1h11 − s1h31)/
√
h2

21 + (c1h11 − s1h31)2 =
√
h2

11 + h2
31/
√
y

s2 = −h21/
√
y.

That is, the (3, 2) element of G̃T1G
T
1 H

′
4×4 is zero. As H ′

×4 is of rank 2, this further
implies that the (3, 3) and the (3, 4) element have to be zero as well. Hence,

QTH ′
4×4 = GT2




x x x x
0 x x x
0 0 0 0
0 x x x




=




x x x x
0 x x x
0 0 x x
0 0 x x


 ,

where Q is the product of the orthogonal symplectic transformations used. The zero
in position (3, 2) occurs after eliminating the (3, 1) and the (2, 1) entry due to the
special form of H ′

4×4 and it is not affected by the final transformation. Furthermore,
it is obvious that the (1, 1) and the (2, 2) entry are nonzero as νj and νj+1 are nonzero.
Therefore, the rank condition assures that

QTH ′
4×4 =




x x x x
0 x x x
0 0 0 0
0 0 0 0


 .

86

Thus, the last two rows of QT span the left-invariant subspace of H ′
4×4 corresponding

to λ and µ. Therefore, we have

QTH4×4Q =




x1 x2 x x
x3 x4 x x
0 0 −x1 −x3

0 0 −x2 −x4


 =

[
∆ X
0 −∆T

]
, (6.4)

where the 2× 2 matrix ∆ has the eigenvalues −λ,−µ with negative real part. Using
the same approach as in (6.1) an orthogonal matrix U1 can be found such that

UT1

[
x1 x2

x3 x4

]
U1 =

[
−α d
b −α

]
,

where α, b, d ∈ R, and −λ = −α+ iβ,−µ = −α− iβ with iβ =
√
bd. Using

U = diag(U1, U1),

yields

UTQTH4×4QU =




−α d x x
b −α x x
0 0 α −b
0 0 −d α


 .

In case eigenvectors have to be read off, transformations as in (6.2) or (6.3) have to
be applied to achieve




−α β x x
−β −α x x
0 0 α −β
0 0 β α


 .

If we again lift QU into the suitable 2n× 2n orthogonal symplectic G, then SG has
columns j and j+1 belonging to the (stable) invariant subspace of H . This completes
the discussion for the case that the 4 × 4 subproblem has complex eigenvalues with
nonzero real part.

Remark 6.3. In case, a different ordering of the diagonal blocks in (6.4) is
desired, a reordering is possible later using the ideas presented in, e.g, [76, Section
4.5.4]. An orthogonal symplectic matrix U can be found such that

UT
[

∆ X
0 −∆T

]
U =

[
∆̃ X

0 −∆̃T

]
(6.5)

where ∆ has eigenvalue with negative real part and ∆̃ has eigenvalues with positive
real part. If Y is the solution of the Lyapunov equation

∆Y − Y∆T = X,

then Y is symmetric and consequently the columns of [−Y, I]T span an isotropic sub-
space of the 4× 4 Hamiltonian matrix. Thus, there exists a symplectic QR decompo-
sition

[
−Y
I

]
= U

[
R
0

]
.

87

By direct computation, it can be seen that U is an orthogonal symplectic matrix which
produces a reordering of the form (6.5). In our implementation, the Hapack [23]
routine haschord is called to perform this computation.

Next let us consider the case that θj ≥ 0, that is case that the eigenvalues of
H4×4 are real or purely imaginary. In case νjνj+1 6= 0, we suggest to use a few
implicit double shift SR steps in order to decouple the problem further into two 2× 2
subproblems. These can be solved as discussed at the beginning of this section. The
same approach is used in the case νjνj+1 = 0 and either νj = 0 or νj+1 = 0, but not
both of them. If νj+1 6= 0, H4×4 should first be permuted using

JP =




1
−1

1
−1


 (6.6)

such that we have

H4×4 =




δj 0 βj ζj+1

0 δj+1 ζj+1 βj+1

νj 0 −δj 0
0 0 0 −δj+1




in both cases.
If νj = νj+1 = 0 we have

H4×4 =




δj 0 βj ζj+1

0 δj+1 ζj+1 βj+1

0 0 −δj 0
0 0 0 −δj+1


 ,

and the eigenproblem decouples right away. In case the eigenvalues appear in the
wrong order on the diagonal, they can be reordered as follows. In order to interchange
δj+1 and −δj+1 a rotation of the form

G =




1
c s

1
−s c


 ,

c = βj+1/
√
βj+1 + 4δ2j+1

s = 2δj+1/
√
βj+1 + 4δ2j+1

needs to be applied

GTH4×4G =




δj −sζj+1 βj cζj+1

0 −δj+1 cζj+1 βj+1

0 0 −δj 0
0 0 sζj+1 δj+1


 .

Similarly, δj and −δj can be interchanged;

G =




c s
1

−s c
1


 ,

c = βj/
√
βj + 4δ2j

s = 2δj/
√
βj + 4δ2j

88

needs to be applied

GTH4×4G =




−δj 0 βj cζj+1

−sζj+1 δj+1 cζj+1 βj+1

0 0 δj sζj+1

0 0 0 −δj+1


 .

An invariant subspace can be read off from this form. In case, eigenvectors are desired,
a similarity transformation with JP as in (6.6) will achieve




δj+1 sζj+1 βj+1 −cζj+1

0 −δj −cζj+1 βj
0 0 −δj+1 0
0 0 −sζj+1 δj


 .

In case both eigenvalues have to be interchanged, that is, the (1, 1) and the (2, 2)
block have to be interchanged, this can be done as described in Remark 6.3.

Remark 6.4. In [145], it is suggested to further reduce the 4× 4 problem

H ′
4×4 =

[
∆j Xj

0 −∆T
j

]
,

where ∆j contains the stable eigenvalues −λ,−λ, to block diagonal form. The column
range of Uj = (H ′

4×4 + λjI)(H
′
4×4 + λI) spans the unstable invariant subspace. This

implies

span(Uj) = span(

[
∆jXj −Xj∆

T
j + 2Re(λ)∆j

−4Re(λ)∆T
j

]
) = span(

[
Z1

Z2

]
).

As Z2 is regular, we can define

Fj =

[
Z−T

2 Z1

0 Z2

]
.

Fj is symplectic and

F−1
j H ′

4×4Fj =

[
∆j

−∆T
j

]
.

If ∆j is further transformed to diagonal form (using complex arithmetic), this allows
to read off the eigenvectors to all eigenvalues, but, depending on λ this additional
transformation may increase the numerical instability of the SR algorithm.

Such an additional transformation is not necessary as the eigenvectors can be read
off directly from

[
∆ X
0 −∆T

]
, with ∆ =

[
−α β
−β −α

]
, α, β ∈ R, α > 0.

The vectors

z1 =




1
i
0
0


 , z2 =




i
1
0
0


 ,

89

are eigenvectors corresponding to the eigenvalues

λ1 = −α+ iβ, λ2 = −α− iβ.

In order to obtain the eigenvectors corresponding to the eigenvalues

λ3 = α+ iβ, λ4 = α− iβ

consider for j = 3, 4
[

∆ X
0 −∆T

]
zj = λjzj , zj =

[
zj1
zj2

]
, zj1, zj2 ∈ C

2.

This implies

−∆T zj2 = λjzj2, and ∆zj1 +Xzj2 = λjzj1.

The first system is solved easily

z32 =

[
1
i

]
, and z42 =

[
i
1

]
.

This allows to rewrite the second system as

(∆− λjI)zj1 = −Xzj2.

As λj is not an eigenvalue of ∆, this 2 × 2 systems of linear equations can easily be
solved. This determines the eigenvectors

z3 =



z31
1
i


 , z4 =



z41
i
1


 .

When all 2× 2 and 4× 4 subproblems are solved, H has been transformed into a
matrix of the form




H11 H1,m+1

H22 H2,m+2

. . .
. . .

Hmm Hm,2m

Hm+1,1 −HT
11

Hm+2,2 −HT
22

. . .
. . .

H2m,m −HT
mm




where the blocks Hij are either 1 × 1 or 2 × 2. If the block Hjj is of order 2 × 2,
then the block Hm+j,j = 0 and Hjj has a pair of complex conjugate eigenvalues with
negative real part. If the block Hjj is of order 1 × 1 and Hm+j,j = 0, then Hjj is
a negative real eigenvalue of H , otherwise (that is, if Hm+j,j 6= 0) Hjj = 0 and the
2× 2 submatrix

[
Hjj Hj,m+j

Hm+j,j −HT
jj

]
=

[
0 Hj,m+j

Hm+j,j 0

]

90

represents a pair of purely imaginary eigenvalue.
Any order of the eigenvalues on the diagonal is possible. As

[
PT 0
0 PT

] [
A G
Q −AT

] [
P 0
0 P

]
=

[
PTAP PTGP
PTQP −PTAP

]
,

we can easily rearrange the order of the eigenvalues by appropriate permutations. If,
e.g., one wants to move the blocks corresponding to purely imaginary eigenvalues all
the way to the end of the matrix, then this can be done as follows: Assume the purely
imaginary eigenvalue is represented by the entries Hjj , Hm+j,j , Hj,m+j and Hj+1,j+1

is a 2× 2 block, then a permutation

[
0 I2
1 0

] [
Hxy 0
0 Hx+1,y+1

] [
0 1
I2 0

]
=

[
Hx+1,y+1 0

0 Hxy

]
, x, y = j,m+ j

will interchange the blocks Hjj and Hj+1,j+1, as well as the corresponding blocks
Hj,m+j andHj+1,m+j+1, Hm+j,j andHm+j+1,j+1, andHm+j,m+j andHm+j+1,m+j+1.
If Hj+1,j+1 is a 1× 1 block, then a permutation with

[
0 1
1 0

]

will interchange the blocks. Proceeding in this way, all purely imaginary eigenvalue
can be moved to the end of the matrix such that

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

H11 H1,r

. . .
. . .

Hkk Hk,ℓ

0 Hq,p

. . .
. . .

0 Hm,2m

0 −H
T
11

. . .
. . .

0 −H
T
kk

Hp,q 0
. . .

. . .

H2m,m 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(6.7)

where ℓ = m+ k, p = ℓ+ 1, q = k+ 1, r = m+ 1 and the blocks H11 to Hkk represent
the real or complex eigenvalues with negative real part. Clearly, in case the symplectic
transformation matrix S required to transformH into this form has been accumulated,
eigenvectors can be read off for all eigenvalues with nonnegative real part and for all
purely imaginary ones, if, for all complex eigenvalues, the corresponding 2× 2 matrix
has been transformed to

[
−α β
−β −α

]
.

6.1. Eigenvectors. Eigenvectors can be read off the Schur-like form (6.7) ob-
tained via the SR iteration. Let us first consider the case of real eigenvalues (see

91

Remark 6.1) and partition the 2n× 2n matrix (6.7) as




H̃1 H̃3

−λ h̃

H̃2 H̃4

0 H̃5

0 −H̃T
1

0 λ

0 −H̃T
2

−H̃5 0




,

with λ, h̃ ∈ R and H̃1, H̃3 ∈ Rn1×n1 , H̃2, H̃4 ∈ Rn2×n2 , H̃5 ∈ Rn3×n3 where n =
n1 + 1 + n2 + n3. Obviously, the eigenvector corresponding to −λ, λ ∈ R, λ > 0 can
be read off. The eigenvector corresponding to λ




H̃1 H̃3

−λ h̃

H̃2 H̃4

0 H̃5

0 −H̃T
1

0 λ

0 −H̃T
2

−H̃5 0







0

h̃
0
0
0
2λ
0
0




= λ




0

h̃
0
0
0
2λ
0
0




.

Next let us consider complex eigenvalues with nonzero real part (see Remark 6.4).
Partition the 2n× 2n matrix (6.7) as




H̃1 H̃3

∆ h̃

H̃2 H̃4

0 H̃5

0 −H̃T
1

0 −∆T

0 −H̃T
2

−H̃5 0




, (6.8)

with ∆, h̃ ∈ R2×2 and H̃1, H̃3 ∈ Rn1×n1 , H̃2, H̃4 ∈ Rn2×n2 , H̃5 ∈ Rn3×n3 where n =
n1 + 2 + n2 + n3. Moreover,

∆ =

[
−α β
−β −α

]
, α, β ∈ R, α > 0.

The eigenvectors z1 and z2 corresponding to the eigenvalues of ∆, that is, correspond-
ing to λ1 = −α + iβ and λ2 = −α − iβ are given as (using the same partition as in

92

the matrix (6.8))

z1 =




0
z12
0
0
0
0
0
0




, z12 =

[
1
i

]
z2 =




0
z22
0
0
0
0
0
0




, z22 =

[
i
1

]
.

The eigenvectors z3 and z4 corresponding to the eigenvalues of −∆T , that is, corre-
sponding to λ3 = α+ iβ and λ4 = α− iβ are given as (using the same partition as in
the matrix (6.8))

z3 =




0
z31
0
0
0
z32
0
0




, z32 =

[
1
i

]
z4 =




0
z41
0
0
0
z42
0
0




, z42 =

[
i
1

]

where z31 and z41 are chosen as explained in Remark 6.4.
Finally, let us consider purely imaginary eigenvalues. Partition the 2n×2nmatrix

(6.7) as




H̃1 H̃2

0 H̃3

0 β

0 H̃4

0 −H̃T
1

−H̃3 0
−β 0

−H̃4 0




, (6.9)

with β ∈ R and H̃1, H̃2 ∈ Rn1×n1 , H̃3 ∈ Rn2×n2 , H̃4 ∈ Rn3×n3 where n = n1 + n2 +
1 + n3. The eigenvectors z1 and z2 corresponding to the eigenvalues λ1 = iβ and
λ2 = −iβ are given as (using the same partition as in the matrix (6.9))

z1 =




0
0
1
0
0
0
i
0




, z2 =




0
0
1
0
0
0
−i
0




.

The eigenvectors of the original Hamiltonian matrix H can be obtained from the
eigenvectors z of the matrix H̃ (6.7) if the transformation matrix S which transforms

93

Algorithm: Inverse Iteration

Given a matrix H , an eigenvalue approximation µ and a starting vector x0, an
eigenvector x is computed: Hx = µx.

x0 = 1
||x0||

x0

k = 1
while not satisfied

solve (H − µI)xk = xk−1

xk = 1
||xk||

xk
k = k + 1

end
Table 6.1

Inverse Iteration

H into the form (6.7) is accumulated:

HSz = SH̃z = λSz.

In case S is badly conditioned or has not been accumulated, inverse iteration might
be more advisable in order to compute an eigenvector of the original Hamiltonian J-
Hessenberg matrix. This has been first discussed in [132]. The presentation given
here follows that one in [132].

As the eigenvalues of the Hamiltonian J-Hessenberg matrix H are known, one
approach for computing additional eigenvectors is to use inverse iteration. Essentially,
for this iteration, the inverse of H − µI is repeatedly multiplied against a starting
vector. A reasonable implementation of this process is as given in Table 6.1 (see, e.g.,
[65]). Solving the linear system (H − µI)xk = xk−1 is the most expensive part of
this iteration. As H is of J-Hessenberg form, this can cheaply be achieved by an LU
decomposition [65] of H .

Let us consider a 8× 8 example H − µI



δ1 − µ β1 ζ2
δ2 − µ ζ2 β2 ζ3

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

ν1 −δ1 − µ
ν2 −δ2 − µ

ν3 −δ3 − µ
ν4 −δ4 − µ




.

The first step of Gaussian elimination will zero all entries in the first column of this
matrix below the (1, 1) entry. This can easily be achieved by premultiplication with

L1 =




1
1

1
1

− ν1
δ1−µ

1

1
1

1




94

which yields U1 = L1(H − µI)

U1 =




δ1 − µ β1 ζ2
δ2 − µ ζ2 β2 ζ3

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

v11 v12
ν2 −δ2 − µ

ν3 −δ3 − µ
ν4 −δ4 − µ




,

with v11 = −δ1 − µ+ β1ℓ1, v12 = ζ2ℓ1 and ℓ1 = −ν1/(δ1 − µ). Next the entries below
the (2, 2) entry in the second column of L1(H − µI) have to be eliminated. This is
achieved by

L2 =




1
1

1
1

− ν1
δ1−µ

1

− ν2
δ2−µ

1

1
1




which yieldsU2 = L2(H − µI)

U2 =




δ1 − µ β1 ζ2
δ2 − µ ζ2 β2 ζ3

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

v11 v12
v21 v22 v23

ν3 −δ3 − µ
ν4 −δ4 − µ




,

with v21 = ζ2ℓ2, v22 = −δ2 − µ + β2ℓ2, v23 = ζ3ℓ2 and ℓ2 = −ν2/(δ2 − µ). Clearly,
the next two columns can be transformed into the desired form in the same fashion.
Applying

L4 =




1
1

1
1

− ν1
δ1−µ

1

− ν2
δ2−µ

1

− ν3
δ3−µ

1

− ν4
δ4−µ

1




95

yields U4 = L4(H − µI)

U4 =




δ1 − µ β1 ζ2
δ2 − µ ζ2 β2 ζ3

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

v11 v12
v21 v22 v23

v32 v33 v34
v43 v44




,

with v32 = ζ3ℓ3, v33 = −δ3 − µ + β3ℓ3, v34 = ζ4ℓ3 and ℓ3 = −ν3/(δ3 − µ), and
v43 = ζ4ℓ4, v44 = −δ4 − µ+ β4ℓ4 and ℓ4 = −ν4/(δ4 − µ). Next, the entries below the
(5, 5) entry in the fifth column have to be eliminated. This can be done by

L5 =




1
1

1
1

− ν1
δ1−µ

1

− ν2
δ2−µ

− v21v11
1

− ν3
δ3−µ

1

− ν4
δ4−µ

1




yields U5 = L5(H − µI)

U5 =




δ1 − µ β1 ζ2
δ2 − µ ζ2 β2 ζ3

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

v11 v12
v̂22 v23
v32 v33 v34

v43 v44




,

with v̂22 = v22+v12ℓ5 and ℓ5 = −v21/v11. Continuing in this fashion, finally we obtain

L7 =




1
1

1
1

− ν1
δ1−µ

1

− ν2
δ2−µ

− v21v11
1

− ν3
δ3−µ

− v32
bv22

1

− ν4
δ4−µ

− v43
bv33

1




96

yields U7 = L7(H − µI)

U7 =




δ1 − µ β1 ζ2
δ2 − µ ζ2 β2 ζ3

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

v11 v12
v̂22 v23

v̂33 v34
v̂44




,

with v̂33 = v33 + v23ℓ6, ℓ6 = −v32/v̂22 and v̂44 = v44 + v34ℓ7, ℓ7 = −v43/v̂33. From this
it is easily seen that in general the LU decomposition of a Hamiltonian J-Hessenberg
matrix H = LU is of the form

L =




...

@
...@


 , U =


 @ @@@

@@


 .

The LU decomposition can be computed without forming H , L or U explicitly. From
the parameters which determine a Hamiltonian J-Hessenberg matrix H , the entries
of L and U can be computed directly. Only the 2n− 1 relevant entries of L as well as
the 5n− 2 relevant entries of U should be stored. Linear systems Hx = LUx = b can
now easily be solved using forward substitution Lz = b and backward substitution
Ux = z. An implementation of this process should make use of the extremely sparse
structure of L and U .

Pivoting should be incorporated in the process described above in order to in-
crease numerical stability. Let us consider pivoting during the first n steps of the LU
factorization first, that is, pivoting while eliminating the entries in the (2, 1) block.
For simplicity, let us consider the 8× 8 example discussed above. Assume that in U1

we have ν2 < δ2−µ, then the second and the sixth row of U1 should be interchanged.
This gives

Ũ1 =




δ1 − µ β1 ζ2
ν2 −δ2 − µ

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

v11 v12
δ2 − µ ζ2 β2 ζ3

ν3 −δ3 − µ
ν4 −δ4 − µ




As before, next, the entries below the (2, 2) entry in the second column of Ũ1 have to
be eliminated. This is achieved by

L̃2 =




1
1

1
1

1

− δ2−µν2
1

1
1




97

which yields Ũ2 = L̃2Ũ1

Ũ2 =




δ1 − µ β1 ζ2
ν2 −δ2 − µ

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

v11 v12
ζ2 ṽ22 ζ2

ν3 −δ3 − µ
ν4 −δ4 − µ




,

with ṽ22 = β2 + δ22/ν2. The structure of L and U is the same as before, but the
symmetry in the (1, 2) block is lost.

Finally, let us consider pivoting during the last n steps of the LU factorization,
that is, pivoting while eliminating the subdiagonal entries in the (2, 2) block. For
simplicity, let us consider the 8 × 8 example discussed above. Assume that in U4 we
have v21 < v11, then the fifth and the sixth row of U4 should be interchanged. This
gives

Ũ4 =




δ1 − µ β1 ζ2
δ2 − µ ζ2 β2 ζ3

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

v21 v22 v23
v11 v12

v32 v33 v34
v43 v44




.

Next, the entries below the (5, 5) entry in the fifth column have to be eliminated.
This can be done by

L̃5 =




1
1

1
1

1
− v11v21

1

1
1




yields Ũ5 = L̃5Ũ4

Ũ5 =




δ1 − µ β1 ζ2
δ2 − µ ζ2 β2 ζ3

δ3 − µ ζ3 β3 ζ4
δ4 − µ ζ4 β4

ṽ11 ṽ12 ṽ13
ṽ22 ṽ23
v32 v33 v34

v43 v44




,

98

with ṽ11 = v21, ṽ12 = v22, ṽ13 = v23, ṽ22 = v12− v11v22/v21, ṽ23 = −v11v23/v21. Hence,
pivoting in the (2, 2) block will increase the number of upper subdiagonals in that
block by one. The final LU decomposition of H − µI will be of the form

L =




1
. . .

. . .

1
l1 1

. . . ln+1
. . .

. . .
. . .

. . .

ln l2n−1 1




(6.10)

and

U =




u1 b1 ζ2,o
. . . ζ2,u

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . ζn,o
un ζn,u bn

v11 v12 v13
. . .

. . .
. . .

. . .
. . . vn−2,n

. . . vn−1,n

vnn




(6.11)

Using the notation used above, the algorithm for computing the LU factorization of
a Hamiltonian J-Hessenberg matrix can be summarized as given in Table 6.2. The
pivot vector p denotes the interchange permutations. This information is needed in
order to be able to perform the forward substitution as in the standard Gaussian
elimination (see, e.g., [65, Chapter 7.6]). For completeness, the forward substitution
Lz = b is given in Table 6.3 in order to demonstrate the use of the pivot vector in
order to perform the necessary row interchanges.

A careful flop count reveals that the LU decomposition requires at most 7n mul-
tiplications and 3n additions for a 2n × 2n Hamiltonian J-Hessenberg matrix. The
forward substitution requires at most 4n multiplications and 4n additions, while the
backward substitution requires at most 7n multiplications and 5n additions. Hence,
making use of the special structure of the Hamiltonian J-Hessenberg matrices, the
inverse iteration can be implemented in O(n) flops compared to O(n2) flops in the
general case. Usually (that is, assuming that the eigenvalue µ has been computed via
the SR algorithm is explained in the previous sections), only one iteration is required
to produce an adequate approximate eigenvector.

99

Algorithm: LU factorization of a Hamiltonian J-Hessenberg matrix

Given a 2n× 2n Hamiltonian matrix A in J-Hessenberg form compute the LU
factorization of A − µI for a given real or complex µ. The resulting matrices
L and U are of the form (6.10) and (6.11), the pivot vector p defines the
interchange permutations.

p = 1 : 2n
for j = 1 : n

uj = δj − µ
vjj = −δj − µ
bj = βj
if j > 1
then ζj,o = ζj

ζj,u = ζj
end

end
for j = 1 : n

if |νj | > |δj − µ|
then pj = n+ j

uj = νj
νj = δj − µ
if j > 1 then vj,j−1 = ζj end
vjj = βj
if j < n then vj,j+1 = ζj+1 end
ζj,u = 0
bj = −δj − µ
ζj+1,o = 0
ℓj = −νj/uj
vjj = vjj + ℓjβj

else ℓj = −νj/uj
if j > 1 then vj+1,j = ℓjζj+1 end
vjj = vjj + βjℓj
if j < n then vj,j+1 = ℓjζj+1 end

end end
for j = 1 : n− 1

if |vj+1,j | > |vjj |
then pn+j = n+ j + 1

h = vj,j:j+2

vj,j:j+2 = vj+1,j:j+2

vj+1,j:j+2 = h
end
ℓn+j = −vj+1,1/vjj
vj+1,j+1 = vj+1,j+1 + ℓn+jvj,j+1

vj+1,j+2 = vj+1,j+2 + ℓn+jvj,j+2

end

Table 6.2
LU factorization of a Hamiltonian J-Hessenberg matrix with pivoting

100

Algorithm: Forward Substitution using the LU factorization from Table 6.2

Given the LU factorization of a 2n×2n Hamiltonian matrix A in J-Hessenberg
form, the system Lz = x is solved. The pivot vector p defines the interchange
permutations.

for j = 1 : 2n
h = xj
xj = xpj

xpj
= h

if j < n+
then zj = xj
end
if j == n+ 1
then zj = lj−nzj−n + xj
end
if j > n+ 1
then zj = lj−nzj−n + lj−1zj−1 + xj
end

end

Table 6.3
Forward substitution

7. Numerical Experiments. The parameterized SR algorithm for Hamilto-
nian matrices as described in the previous sections has been implemented in Matlab
Release 2006a. Numerical tests were run on a Pentium M processor. The tolerance
for declaring deflation was chosen as

|ζj | ≤ 2−52(|δj−1|+ |δj |).

A symplectic Gauss transformation was reject when its condition number was larger
than 108. This never happened for random test cases.

First numerical tests to determine the convergence properties of the algorithm
have been performed. 100 random Hamiltonian J-Hessenberg matrices of the size
2n× 2n, n = 3, . . . , 200 were generated and the average number of iterations needed
for computing all eigenvalues has been determined. Here each implicit quadruple shift
SR step was counted as one iteration, no matter how small the problem has become
due to deflation. Figure 7.1 displays the average number of iterations needed as well
as the maximal and the minimal number of iterations needed within the test set of
100 matrices. This data shows that on average, 0.706 iterations per eigenvalue are
required. When considering only smaller matrices (n = 3, . . . , 20), on average only
0.67 iterations per eigenvalue are required. This is comparable to the number of
iterations needed by the QR algorithm. Similar tests have been performed in [38].
There a different implementation (not parameterized) has been used, the code used
only single precision. In [38], it was reported that ’The number of iterations needed to
compute all eigenvalues of the 2n×2n Hamiltonian J-Hessenberg matrix was between
2n and 4n. The average number of iterations for the computation of an eigenvalue
was between 1 and 1.5.’ In our tests with the nonparameterized version of the SR
algorithm we also observed an increase in the number of iterations as compared to

101

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

2n

n
u

m
b

e
r

o
f
ite

ra
tio

n
s

100 random exaples of size 2n × 2n

average
min
max

Fig. 7.1. Average number of iterations needed to compute all eigenvalues

the number of iterations needed by the parameterized version.

As the implementation works on the parameters only, each iteration step requires
O(n) flops (not considering the update of the overall transformation matrix). There-
fore, the overall work for the computation of the eigenvalues alone is O(n2) plus O(n3)
for the initial reduction to J-Hessenberg form, which is comparable with the work for
the QR algorithm for symmetric matrices.

In order to say something about the accuracy of the computed eigenvalues, let us
consider the Hamiltonian J-Hessenberg matrix

H =




1 19 2
2 2 18 8

3 8 17 5
4 5 16 3

5 3 15 6
6 6 14

−3 −1
−5 −2

−7 −3
−9 −4

−11 −5
−13 −6




.

All eigenvalues are purely imaginary. The eigenvalues have been computed using the
parameterized SR algorithm and the routine haeig from the HAPACK package, a
different, structure-preserving eigensolvers for Hamiltonian eigenproblem. This rou-
tine does not make use of the Hamiltonian J-Hessenberg structure, but it is in contrast
to the SR algorithm backward stable. Hence we expect that it will perform slightly
better then the (parameterized) SR algorithm. For each computed eigenvalue λj , the
minimal singular value σminj of H−λjI has been computed. In exact arithmetic, this
value has to be zero.

102

σmin haeig σmin SR eigenpair
3.4843e-016 3.2871e-015 0 ± 6.1777e+000i
3.5513e-015 3.6666e-015 0 ± 7.5082e+000i
4.5359e-015 4.5359e-015 0 ± 8.1416e+000i
7.1138e-016 6.8828e-015 0 ± 1.0691e+001i
1.9564e-015 1.5470e-014 0 ± 1.3046e+001i
2.0029e-015 3.0869e-015 0 ± 1.3046e+001i

As expected, the eigenvalues computed by the SR algorithm are almost as accu-
rate as those computed by haeig, only one digit might be lost.

Cubic convergence of the SR algorithm can clearly be seen for this example by
considering the values ζj during the iterations:

iteration ζ4 ζ5
0 5.0000e+000 3.0000e+000
1 -5.1783e+000 -6.4104e-001
2 6.6055e+000 5.8846e-003
3 -4.6184e+000 -6.5287e-009
4 1.6696e+000 1.4244e-022
5 9.2538e-003 0
6 1.3824e-009 0
7 -7.6066e-024 0

Finally, consider the following 4× 4 problem

H =




3− ǫ 1 −1 −1
4 2− ǫ −1 −1

4ǫ− 11 2ǫ− 5 −3 + ǫ −4
2ǫ− 5 2ǫ− 2 −1 −2 + ǫ


 =

[
A G
Q −AT

]

is taking from the collection of benchmark examples for the numerical solution of
algebraic Riccati equations [24, Example 11]. It represents a type of algebraic Riccati
equations arising in H∞-control problems. The spectrum of H is {±ǫ ±

√
−1}; the

eigenvalues approach the imaginary axis as ǫ→ 0. The solution of the corresponding
Riccati equation

0 = Q+ATX +XA−XGX (7.1)

can be computed using the stable invariant subspace of H ; i.e., the subspace cor-
responding to the eigenvalues of H in the open left half plane. If this subspace is

spanned by

[
U1

U2

]
and U1 is invertible, then X = U2U

−1
1 is the stabilizing solution

of (7.1). For the example considered here, the matrix

X =

[
2 1
1 1

]

solves (7.1) for arbitrary ǫ. Computing the Hamiltonian J-Hessenberg form of H and
using the direct approach of solving the resulting 4×4 problem as discussed in Section
6, we obtain

103

ǫ ||X −XSR|| |λ− λSR| |λ− λhaeig | |λ− λeig |
10−1 6.5 · 10−15 5.2 · 10−15 8.3 · 10−15 5.8 · 10−15

10−2 3.1 · 10−14 2.9 · 10−14 1.1 · 10−13 6.3 · 10−14

10−3 1.2 · 10−12 5.8 · 10−13 1.0 · 10−12 2.9 · 10−13

10−4 5.6 · 10−12 5.6 · 10−12 5.4 · 10−12 3.9 · 10−12

10−5 1.3 · 10−10 1.3 · 10−10 7.5 · 10−11 7.8 · 10−12

10−6 9.8 · 10−10 9.8 · 10−10 8.1 · 10−11 2.4 · 10−10

10−7 9.7 · 10−9 5.1 · 10−9 4.6 · 10−9 4.4 · 10−9

10−8 4.4 · 10−8 6.7 · 10−9 2.4 · 10−8 3.2 · 10−8

10−9 4.3 · 10−7 4.9 · 10−10 2.9 · 10−8 4.3 · 10−8

10−10 6.1 · 10−7 2.5 · 10−10 3.4 · 10−8 3.7 · 10−8

...
...

...
...

...
0 1.2 · 10−7 4.4 · 10−9 2.9 · 10−8 2.3 · 10−8

where λ denotes the exact eigenvalue, λSR the eigenvalue computed via the above
described process, λhaeig the eigenvalue computed via the function haeig of the HA-
PACK library [23] and λeig the eigenvalue computed via Matlab’s eig. The accu-
racy of the computed eigenvalues degrades as ǫ is chosen smaller and smaller, but from
ǫ = 107 on, the error in the eigenvalues computed with the process described here
is essentially of the order of 10−9, no matter how small ǫ is chosen. The eigenvalues
computed via the unstructured solver eig and those computed via the structure-
preserving function haeig have slightly larger errors. As the structured eigensolvers
compute the real and the imaginary part of the complex quadruple eigenvalue, all
eigenvalues have the same error. The unstructured solver computes two pairs of com-
plex conjugate eigenvalues, each with the same real and imaginary part. In this case,
one might have two different errors when comparing the computed eigenvalues with
the exact ones, only one of those errors is given above (the other one is of the same
order of magnitude). Similarly, the accuracy of the computed solution XSR of the
Riccati equation degrades, until it finally stagnates by an error of the order of 10−7.

8. The (Implicitly Restarted) Symplectic Lanczos Method for Hamilto-
nian Matrices. In this section, first we review the (implicitly restarted) symplectic
Lanczos method [17] to compute a certain subset of the eigenvalues of a Hamilto-
nian matrix H . In [17] only a single shift implicitly restarted Lanczos algorithm is
considered. The double and quadruple shift case has been considered in [132]. As, un-
fortunately, the discussion of the properties of the algorithm given in [17] is incorrect,
a corrected version is given here. Moreover, a Krylov-Schur-like restart is presented.
Numerical examples are given.

The usual nonsymmetric Lanczos algorithm generates two sequences of vectors.
Due to the Hamiltonian structure of H it is easily seen that one of the two sequences
can be eliminated here and thus work and storage can essentially be halved. (This
property is valid for a broader class of matrices, see [61].)

The structure-preserving symplectic Lanczos method [17, 57] generates a sequence
of matrices that satisfy the Lanczos recursion

HS2n,2k = S2n,2kH̃2k,2k + ζk+1vk+1e
T
2k. (8.1)

Here, H̃2k,2k is a Hamiltonian J-Hessenberg matrix. The space spanned by the

columns of S2n,2k is symplectic since S2n,2kTJ2n,2nS2n,2k = J2k,2k where J2j,2j is
a 2j × 2j matrix of the form (2.1).

104

In order to simplify the notation in the following we use, as in [38, 64], a permuted

version of H and H̃ . Let

HP = PHPT , H̃P = PH̃PT , SP = PSPT , JP = PJPT

with the permutation matrix P = P 2n,2n as in (2.2). To simplify the following
discussion, we will assume unless stated otherwise that H is nonderogatory, that is,
that each eigenvalue has unit geometric multiplicity.

¿From STJS = J we obtain

STP JPSP = JP = diag(

[
0 1
−1 0

]
, . . . ,

[
0 1
−1 0

]
)

while S−1HS = H̃ yields HPSP = SP H̃P where

H̃P =




δ1 β1 0 ζ2
ν1 −δ1 0 0
0 ζ2 δ2 β2 0 ζ3
0 0 ν2 −δ2 0 0

0 ζ3
. . .

. . .

0 0
. . .

. . .

. . .
. . . 0 ζn

. . .
. . . 0 0

0 ζn δn βn
0 0 νn −δn




. (8.2)

Hence, the structure–preserving Lanczos method generates a sequence of matrices

S2n,2k
P = [v1, w1, v2, w2, . . . , vk, wk] ∈ R

2n×2k

satisfying

HPS
2n,2k
P = S2n,2k

P H̃2k,2k
P + ζk+1vk+1e

T
2k (8.3)

where H̃2k,2k
P = P kH̃2k,2kP k

T
is a permuted 2k × 2k Hamiltonian J–Hessenberg

matrix H̃2k,2k of the form (8.2). The space spanned by the columns of S2n,2k =

Pn
T

S2n,2k
P P k is symplectic since S2n,2k

P

T
J2n,2n
P S2n,2k

P = J2k,2k
P where P jJ2j,2jP j

T
=

J2j,2j
P and J2j,2j is a 2j × 2j matrix of the form (1.2).

The vector rk+1 := ζk+1vk+1 is the residual vector and is JP –orthogonal to the
columns of S2n,2k

P , the permuted Lanczos vectors. The matrix H2k,2k
P is the JP –

orthogonal projection of HP onto the range of S2n,2k
P ,

H2k,2k
P = J2k,2k

P (S2n,2k
P)TJPHPS

2n,2k
P .

Equation (8.3) defines a length 2k Lanczos factorization of HP . If the residual vector
rk+1 is the zero vector, then equation (8.3) is called a truncated Lanczos factorization
when k < n. Note that rn+1 must vanish since (S2n,2n

P)TJP rn+1 = 0 and the columns

of S2n,2n
P form a JP –orthogonal basis for R2n. In this case the symplectic Lanczos

method computes a reduction to permuted J-Hessenberg form.

105

Remark 8.1. The Implicit-S-Theorem 2.12 says that if there are two symplectic
Lanczos recurrences

HPS
2n,2k
P = S2n,2k

P H̃2k,2k
P + ζk+1vk+1e

T
2k

HP Ŝ
2n,2k
P = Ŝ2n,2k

P H̆2k,2k
P + ζ̆k+1v̂k+1e

T
2k

then there exists a symplectic diagonal matrix

Dk =

[
C

C−1

]
, C ∈ R

k×k

such that

S2n,2k
P = Ŝ2n,2k

P Dk.

Hence, the symplectic Lanczos factorization is, up to multiplication by a trivial matrix,
specified by the starting vector v1. Hence, as this reduction is strongly dependent
on the first column of the transformation matrix that carries out the reduction, we
must expect breakdown or near–breakdown in the Lanczos process as they also occur
in the reduction process to Hamiltonian J–Hessenberg form. Assume that no such
breakdowns occur, and let SP = [v1, w1, v2, w2, . . . , vn, wn]. For a given v1, a Lanczos
method constructs the matrix SP columnwise from the equations

HPSP ej = SP H̃P ej , j = 1, 2,

That is, for odd numbered columns

HP vm+1 = δm+1vm+1 + νm+1wm+1

⇐⇒ νm+1wm+1 = HP vm+1 − δm+1vm+1

=: w̃m+1 (8.4)

and for even numbered columns

HPwm = ζmvm−1 + βmvm − δmwm + ζm+1vm+1

⇐⇒ ζm+1vm+1 = HPwm − ζmvm−1 − βmvm + δmwm

=: ṽm+1. (8.5)

Now we have to choose νm+1, ζm+1 such that STP JPSP = JP is satisfied, that is we
have to choose νm+1, ζm+1 such that vTm+1JPwm+1 = 1. One possibility is to choose

ζm+1 = ||ṽm+1||2, νm+1 = vTm+1JPHP vm+1.

Premultiplying ṽm+1 by wTmJP and using STP JPSP = JP yields

βm = −wTmJPHPwm.

¿From this we obtain the algorithm given in Table 1. There is still some freedom
in the choice of the parameters that occur in this algorithm. Possibilities to remove
these ambiguities have been discussed in [97]. Essentially, the parameters δm can be
chosen freely. Different choices have been proposed in the literature: δm = 1 in [17],

106

Algorithm : Symplectic Lanczos method

Choose an initial vector ṽ1 ∈ R2n, ṽ1 6= 0.
Set v0 = 0 ∈ R2n.
Set ζ1 = ||ṽ1||2 and v1 = 1

ζ1
ṽ1.

for m = 1, 2, . . . do

(update of wm)
set

δm = vTmHP vm

w̃m = HP vm − δmvm
νm = vTmJPHP vm

wm = 1
νm
w̃m

(computation of βm)

βm = −wTmJPHPwm

(update of vm+1)

ṽm+1 = HPwm − ζmvm−1 − βmvm + δmwm

ζm+1 = ||ṽm+1||2
vm+1 = 1

ζm+1
ṽm+1

end
Table 8.1

Symplectic Lanczos Method

δm = 0 in [139], or δm = vTmHP vm in [57]. The last choice of δm implies that the
Lanczos vectors vm and wm are orthogonal to each other. Likewise a different choice
of the parameters ζm, νm is possible.

Remark 8.2. In case δm = 0 is chosen for all m, the symplectic Lanczos algo-
rithm applied to HP is equivalent to the nonsymmetric Lanczos algorithm applied to
the skew-Hamiltonian matrix H2

P , but costs half as much to execute. The nonsym-
metric Lanczos algorithm is a structure-preserving algorithm for skew-Hamiltonian
matrices. See [139] for details.

Remark 8.3. 3 In general, the accuracy of the computed eigenvalues is related to
the condition number of the transformation matrix which transforms the given matrix
to a form from which the eigenvalues can be read off. Hence, if the Lanczos process is
run to completion such that HPSP = SP H̃P , then SP is this transformation matrix.
Therefore, the condition number κ(SP) should be kept as small as possible. As SP is
a permuted symplectic matrix, we have κ(SP) = κ(S) and as S−1 = −JSTJ

κ(S) = ||S||22.

That is, when choosing the free parameters, we should aim at minimizing ||S||2. As

||S||2 ≤ 2n max
1≤k≤n

{||vk||2, ||wk||2}

3This remark is due to an unpublished manuscript by Peter Benner.

107

a suboptimal choice is to minimize the upper bound. If we require ||vk||2 = 1 (as in
[17, 57, 139], this reduces to

||S||2 ≤ 2n max
1≤k≤n

{||wk||2} = 2n max
1≤k≤n

{ 1

|νk|
||HP vk − δkvk||2}.

In order to obtain a symplectic basis, νk is not a free parameter. Hence, the only free
parameter left is δk and we can minimize the right-hand side of the above expression
by

min
δ1,...,δk

max
1≤k≤n

{ 1

|νk|
||HP vk − δkvk||2}.

As the choice of δk doe snot influence the Lanczos vectors vj , wj for 1 ≤ j ≤ k − 1,
this min-max-problem is simply solved by solving in each Lanczos step

δk = argmaxδ∈R
{||HP vk − δvk||2}.

The corresponding quadratic form

fk(δ) = ||HP vk − δvk||22 = vTk H
T
PHP vk − 2δvTkHP vk + δvTk vk

yields the following first-order necessary condition for a minimum (as vTk vk = 1)

f ′(δ) = −2vTkHP vk + 2δ = 0.

Hence, the optimum is

δk = vTkHP vk.

This is the local orthogonality condition proposed first in [57].

Note that only one matrix–vector product is required for each computed Lanczos
vector wm or vm. Thus an efficient implementation of this algorithm requires 6n +
(4nz + 32n)k flops where nz is the number of nonzero elements in HP and 2k is the
number of Lanczos vectors computed (that is, the loop is executed k times). The
algorithm as given in Table 1 computes an odd number of Lanczos vectors, for a
practical implementation one has to omit the computation of the last vector vk+1 (or
one has to compute an additional vector wk+1).

In the symplectic Lanczos method as given above we have to divide by a parameter
that may be zero or close to zero. If such a case occurs for the normalization parameter
ζm+1, the corresponding vector ṽm+1 is zero or close to the zero vector. In this case,
a symplectic invariant subspace of H (or a good approximation to such a subspace)
is detected. By redefining ṽm+1 to be any vector satisfying

vTj JP ṽm+1 = 0

wTj JP ṽm+1 = 0

for j = 1, . . . ,m, the algorithm can be continued. The resulting Hamiltonian J–
Hessenberg matrix is no longer unreduced; the eigenproblem decouples into two
smaller subproblems. In case w̃m is zero (or close to zero), an invariant subspace
of HP with dimension 2m− 1 is found (or a good approximation to such a subspace).
It is easy to see that in this case the parameter νm will be zero (or close to zero).

108

Two eigenvalues and one right and one left eigenvector can be read off directly from
the reduced matrix H̃2m−2,2m−2

P (8.2). We obtain from Table 8.1 that in this case
HP vm = δmvm, i.e., δm is an eigenvalue of HP with corresponding eigenvector vm.
(In case w̃m ≈ 0, we have HP vm ≈ δmvm). Due to the symmetry of the spectrum of
H , we also have that −δm is an eigenvalue of H . Computing an eigenvector y of HP

corresponding to −δm, we can try to augment the (2m−1)–dimensional invariant sub-
space to an HP –invariant subspace of even dimension. If this is possible, the space can
be made JP –orthogonal by JP –orthogonalizing y against { v1, w1, . . . , vm−1, wm−1 }
and normalizing such that yTJP vm = 1.

Thus if either vm+1 or wm+1 vanishes, the breakdown is benign. If vm+1 6= 0
and wm+1 6= 0 but νm+1 = 0, then the breakdown is serious. No reduction of the
Hamiltonian matrix to a Hamiltonian J–Hessenberg matrix with v1 as first column
of the transformation matrix exists. On the other hand, an initial vector v1 exists so
that the symplectic Lanczos process does not encounter serious breakdown. However,
determining this vector requires knowledge of the minimal polynomial of H . Thus,
no algorithm for successfully choosing v1 at the start of the computation yet exists.

It is well-known that in the symmetric Lanczos procedure, loss of orthogonality
between the computed Lanczos vectors signals the convergence of an eigenpair, see,
e.g. [107]. In [8] it is shown that this is also the case in the non-symmetric eigenvalue
problem. The cancellation error and resultant loss of orthogonality appears under
similar conditions as for the symmetric problem, and is controlled by the conditioning
of the eigenvalue. A similar statement can be shown for the symplectic Lanczos
algorithm discussed here, see [57] and [58]. Moreover, the rounding error analysis
of the non-symmetric Lanczos process in finite-precision arithmetic as in [8] can be
carried over to the symplectic Lanczos process, see [57].

Without some form of re–J–orthogonalization the symplectic Lanczos method is
numerically unstable (see Section 8.6.1 and the discussion there). Thus, the symplectic
Lanczos method suffers from the same numerical difficulties as any other Lanczos–like
algorithm.

The numerical difficulties of the symplectic Lanczos method described above are
inherent to all Lanczos-like methods for nonsymmetric matrices. Different approaches
to overcome these difficulties have been proposed. Taylor [133] and Parlett, Taylor,
and Liu [112] were the first to propose a look-ahead Lanczos algorithm that skips
over breakdowns and near-breakdowns. Freund, Gutknecht, and Nachtigal present
in [63] a look-ahead Lanczos code that can handle look-ahead steps of any length.
Freund and Mehrmann adapted this method to the symplectic Lanczos method given
in [64]. The price paid is that the resulting matrix is no longer of J-Hessenberg form,
but has a small bulge in the form to mark each occurrence of a (near) breakdown.
Unfortunately, so far there exists no eigenvalue method that can make use of that
special reduced form.

A different approach to deal with the numerical difficulties of Lanczos-like al-
gorithms is to implicitly restart the symplectic Lanczos factorization. This was first
introduced by Sorensen [126] in the context of nonsymmetric matrices and the Arnoldi
process. Usually only a small subset of the eigenvalues is desired. As the eigenvalues
of the Hamiltonian J-Hessenberg matrices H2k,2k are estimates for the eigenvalues
of H , the length 2k symplectic Lanczos factorization (8.3) may suffice if the residual
vector rk+1 is small. The idea of restarted Lanczos algorithms is to fix the number
of steps in the Lanczos process at a prescribed value k which is dependent on the
required number of approximate eigenvalues. The purpose of the implicit restart is

109

to determine initial vectors such that the associated residual vectors are tiny. Given
(8.3), an implicit Lanczos restart computes the Lanczos factorization

HS̆2n,2k = S̆2n,2kH̆2k,2k + r̆k+1e
T
2k

which corresponds to the starting vector

s̆1 = p(H)s1

(where p(H) ∈ R2n×2n is a polynomial) without having to explicitly restart the Lanc-
zos process with the vector s̆1. This process is iterated until the residual vector rk+1

is tiny. J–orthogonality of the k Lanczos vectors is secured by re–J–orthogonalizing
these vectors when necessary. This idea will be investigated in Section 8.4. As the
iteration progresses, some of the Ritz values may converge to eigenvalues of H long
before the entire set of wanted eigenvalues have. These converged Ritz values may be
part of the wanted or unwanted portion of the spectrum. In either case it is desirable
to deflate the converged Ritz values and corresponding Ritz vectors from the uncon-
verged portion of the factorization. If the converged Ritz value is wanted then it is
necessary to keep it in the subsequent factorizations; if it is unwanted then it must
be removed from the current and the subsequent factorizations. A short comment on
locking and purging techniques to accomplish this is given in Section 8.4.1. Most of
the complications in the purging and deflating algorithms come from the need to pre-
serve the structure of the decomposition, in particular, to preserve the J-Hessenberg
form and the zero structure of the vector eT2k. In [130], Stewart shows how to re-
lax the definition of an Arnoldi decomposition such that the purging and deflating
problems can be solved in a natural and efficient way. Since the method is centered
about the Schur decomposition of the Hessenberg matrix, the method is called the
Krylov-Schur method. In Section 8.5, a Krylov-Schur-like method for the symplectic
Lanczos method is developed as first developed in [132].

But first, we will discuss the truncated symplectic Lanczos factorizations in Sec-
tion 8.1, that is, first we are concerned with finding conditions for the symplectic
Lanczos method terminating prematurely. This is a welcome event since in this case
we have found an invariant symplectic subspace S2n,2k and the eigenvalues of H2k,2k

are a subset of those of H . We will first discuss the conditions under which the resid-
ual vector of the symplectic Lanczos factorization will vanish at some step k. Then
we will show how the residual vector and the starting vector are related. Finally a
result indicating when a particular starting vector generates an exact truncated fac-
torization is given. Stopping criteria which guarantee the required accuracy of the
computed Ritz values and vectors are discussed in Section 8.2.

The symplectic Lanczos algorithm described above will, in general, compute ap-
proximations to a few of the largest eigenvalues of a Hamiltonian matrix H . Some-
times only a few of its smallest eigenvalues are needed. Since these are also the largest
eigenvalues of H−1, a Krylov subspace method can be applied to H−1 to find them.
Since H−1 inherits the Hamiltonian structure of H , the symplectic Lanczos method
is an appropriate method in the interest of efficiency, stability and accuracy. In sit-
uations where some prior information is given, one might prefer to use a shift before
inverting. Specifically, if we know that the eigenvalues of interest lie near τ , we might
prefer to work with (H − τI)−1. Unfortunately, the shift destroys the Hamiltonian
structure. Appropriate shift-and-invert strategies are discussed in Section 8.3.

Numerical properties of the symplectic Lanczos algorithm are discussed in the
final section of this chapter. Numerical experiments are given.

110

8.1. Truncated symplectic Lanczos factorizations. This section is con-
cerned with finding conditions for the symplectic Lanczos method terminating prema-
turely. This is a welcome event since in this case we have found an invariant symplectic
subspace S2n,2k and the eigenvalues of H2k,2k are a subset of those of H . We will first
discuss the conditions under which the residual vector of the symplectic Lanczos fac-
torization will vanish at some step k. Then we will show how the residual vector and
the starting vector are related. Finally a result indicating when a particular starting
vector generates an exact truncated factorization is given.

First the conditions under which the residual vector of the symplectic Lanczos
factorization will vanish at some step k will be discussed. From the derivation of the
algorithm it is immediately clear that if no breakdown occurs, then

span{v1, v2, v3, . . . , vk+1, w1, w2, . . . , wk}
= span{v1, H2

P v1, H
4
P v1, . . . , H

2k
P v1, HP v1, H

3
P v1, . . . , H

2k−1
P v1}

= span{K(HP , v1, 2k)}

and

span{v1, v2, v3 . . . , vk+1, w1, w2, . . . , wk+1}
= span{v1, H2

P v1, H
4
P v1, . . . , H

2k
P v1, HP v1, H

3
P v1, . . . , H

2k+1
P v1}

= span{K(MP , v1, 2k + 1)},

where K(X, v, j) = {v,Xv,X2v . . . ,Xjv}. Clearly, dim K(HP , v1, j) ≤ j+1. Further
it is easy to see that

dim K(HP , v1, ℓ) = d < ℓ =⇒ dim K(HP , v1, j) = d ∀ j > ℓ. (8.6)

If dim K(HP , v1, 2k + 1) = 2k + 1, then

HP vk+1 ∈ span{v1, . . . , vk+1, w1, . . . , wk}.

Hence, there exist real scalars a1, . . . , ak+1 and b1, . . . , bk such that

HP vk+1 = a1v1 + . . .+ akvk+1 + b1w1 + . . .+ bkwk.

Using the definition of νk+1 as given in Table 8.1 and the above expression we obtain
because of J–orthogonality,

νk+1 = vTk+1JPHP vk+1

= a1v
T
k+1JP v1 + . . .+ ak+1v

T
k+1JP vk+1 + b1v

T
k+1JPw1 + . . .+ bkv

T
k+1JPwk

= 0.

As w̃k+1 = νk+1wk+1 = HP vk+1 − δk+1vk+1 (see Table 8.1) it follows that w̃k+1 = 0.
This implies that an invariant subspace of HP with dimension 2k + 1 is found.

If dim K(HP , v1, 2k) = 2k, then HPwk ∈ span{v1, . . . , vk, w1, . . . , wk}. Hence

HPwk = a1v1 + . . .+ akvk + b1w1 + . . .+ bkwk,

for properly chosen aj , bj and from the algorithm in Table 8.1

ṽk+1 = a1v1 + . . .+ ak−2vk−2 + (ak−1 − ζk)vk−1 + (ak − βk)vk
+b1w1 + . . .+ bk−1wk−1 + (bk + δk)wk.

111

Since [v1, w1, . . . , vk, wk]
TJP ṽk+1 = [0, . . . , 0] we obtain for j < k and ℓ < k − 2

vTj JP ṽk+1 = bjv
T
j JPwj = bj = 0

vTk JP ṽk+1 = (bk + δk)v
T
k JPwk = bk + δk = 0

wTℓ JP ṽk+1 = aℓw
T
ℓ JP vℓ = −aℓ = 0

wTk−1JP ṽk+1 = (ak−1 − ζk)wTk−1JP vk−1 = ζk − ak−1 = 0

wTk JP ṽk+1 = (ak − βk)wTk JP vk = βk − ak = 0.

Therefore ṽk+1 = 0 and further ζk+1 = 0. This implies that the residual vector of the
symplectic Lanczos factorization will vanish at the first step k such that the dimension
of K(H, v1, 2k) is equal to 2k and hence is guaranteed to vanish for some k ≤ n.

Next we will discuss the relation between the residual term and the starting vector.
Here, v̂1 will denote the first Lanczos vector after permuting it back, i.e., v̂1 = PT v1.
If dim K(H, v̂1, 2n− 1) = 2n then

HK(H, v̂1, 2n− 1) = K(H, v̂1, n)Cn

where K(H, v̂1, 2n− 1) = [v̂1, Hv̂1, H
2v̂1, . . . , H

2n−1v̂1] ∈ R2n×2n, and Cn ∈ R2n×2n

is a companion matrix of the form

Cn =




0 c0

1 0
...

1
. . .

0 c2n−2

1 c2n−1



.

Thus, for k < n

HK(H, v̂1, 2k−1) = K(H, v̂1, 2k−1)Ck+(H2kv̂1−K(H, v̂1, 2k−1)Cke2k)e
T
2k. (8.7)

Define the residual in (8.7) by

f2k+1 := H2kv̂1 −K(H, v̂1, 2k − 1)Cke2k. (8.8)

Note that

f2k+1 = p2k(H)v̂1 (8.9)

where

p2k(λ) := λ2k −
2k−1∑

j=0

cjλ
j .

We will now show that f2k+1 is up to scaling the residual of the length 2k symplectic
Lanczos iteration with starting vector v̂1. Together with (8.9) this reveals the relation

between residual and starting vectors. Since det(λI − Ck) = λ2k −∑2k−1
j=0 cjλ

j , we
obtain

p2k(λ) = det(λI − Ck).

Let K(H, v̂1, 2k − 1) = S2n,2kR where S2n,2k ∈ R2n×2k with J–orthogonal columns
(that is, (S2n,2k)TJ2n,2nS2n,2k = J2,2k) and R ∈ R2k×2k is a J–triangular matrix.

112

Then S2n,2ke1 = v̂1. The diagonal elements of R are nonzero if and only if the columns
of K(H, v̂1, 2k − 1) are linear independent. Choosing

c =




c0
...

c2k−1


 = R−1(−J2k,2k(S2n,2k)TJ2n,2n)H2kv̂1

assures that (−J2k,2k(S2n,2k)TJ2,2n)f2k+1 = 0. Now multiplying (8.7) from the right
by R−1 yields

HK(H, v̂1, 2k − 1)R−1 −K(H, v̂1, 2k − 1)CkR
−1 = f2k+1e

T
2kR

−1

⇐⇒ HS2n,2k − S2n,2kH̃ = f2k+1e
T
2k/r2k,2k (8.10)

where H̃ = RCkR
−1 is an unreduced J-Hessenberg matrix (see the proof of the

Implicit-S-Theorem 2.12) with the same characteristic polynomial as Ck. Equation
(8.10) is a valid symplectic Lanczos recursion with starting vector v̂1 = S2n,2ke1 and
residual vector f2k+1/r2k,2k. By (8.9) and due to the essential uniqueness of the
symplectic Lanczos recursion any symplectic Lanczos recursion with starting vector
v̂1 yields a residual vector that can be expressed as a polynomial in H times the
starting vector v̂1.

Remark 8.4. ¿From (8.8) it follows that if dimK(H, v̂1, 2k) ≤ 2k, then we
can choose c0, ..., c2k−1 such that f2k+1 = 0. This shows that if the Krylov subspace
K(H, v̂1, 2k − 1) forms a 2k–dimensional H–invariant subspace, the residual of the
symplectic Lanczos recursion will be zero after k Lanczos steps such that the columns
of S2n,2k span a symplectic basis for the subspace K(H, v̂1, 2k − 1).

The final result of this section will give necessary and sufficient conditions for a
particular starting vector to generate an exact truncated factorization in a similar way
as stated for the Arnoldi method in [126]. This is desirable since then the columns of
S2n,2k form a basis for an invariant symplectic subspace of H and the eigenvalues of
H̃2k,2k are a subset of those of H . Here, v̂k, ŵk will denote the Lanczos vectors after
permuting them back, i.e., v̂k = PT vk, ŵk = PTwk.

Theorem 8.5. Let HS2n,2k − S2n,2kH̃2k,2k = ζk+1v̂k+1e
T
2k be the symplectic

Lanczos factorization after k steps, with H̃2k,2k unreduced. Then ζk+1 = 0 if and
only if v̂1 = Xy where HX = XY with rank (X) = 2k and Y a Jordan matrix of
order 2k.

Proof. If ζk+1 = 0, let H̃2k,2kX̃ = X̃Y be the Jordan canonical form of H̃2k,2k

and put X = S2n,2kX̃ . Then HX = S2n,2kH̃2k,2kX̃ = S2n,2kX̃Y = XY and v̂1 =
S2n,2ke1 = S2n,2kX̃X̃−1e1 = Xy with y = X̃−1e1.

Suppose now that HX = XY , rank(X) = 2k and v̂1 = Xy. Then HmX = XY m

for m ∈ N and it follows that

Hmv̂1 = HmXy = XY my ∈ Range(X)

for m ∈ N. Hence by (8.6) dim K(H, v̂1, 2k + 1) ≤ rank (X) = 2k. Since H̃2k,2k is
unreduced, dim K(H, v̂1, j) = j+1 for j = 1, ..., 2k. Hence dim K(H, v̂1, 2k+1) = 2k
and therefore, ζk+1 = 0.

A similar result may be formulated in terms of Schur vectors or symplectic Schur
vectors (see, e.g., [98, 92] for the real symplectic Schur decomposition of a symplectic
matrix). It is known (see, e.g., Theorem 2.15) that for any symplectic matrix H ∈

113

R2n×2n which has no purely imaginary eigenvalues, there exists an orthogonal and
symplectic matrix Q such that

QTHQ =

[
T N
0 −T T

]
, T,N ∈ R

n×n, (8.11)

where T is quasi upper triangular. Q can be chosen such that T has only eigenvalues
in the open left half plane. Such a symplectic Schur decomposition exists for a broader
class of Hamiltonian matrices, see Theorem 2.15.

Theorem 8.6. Let H be a Hamiltonian matrix having a symplectic Schur de-
composition as in Theorem 2.15. Let

HS2n,2k − S2n,2kH2k,2k = ζk+1v̂k+1e
T
2k

be the symplectic Lanczos factorization after k steps, with H2k,2k unreduced. Then
ζk+1 = 0 if and only if v̂1 = Q2ky where

HQ2n,2k = Q2n,2k

[
T N
0 −T T

]
= Q2n,2kR

with (Q2n,2k)TQ2n,2k = I2k,2k, the columns of Q2n,2k are J–orthogonal, and T quasi
upper triangular of order k.

Proof. If ζk+1 = 0, then HS2n,2k = S2n,2kH2k,2k. Let H2k,2kZ = ZR be a real
symplectic Schur decomposition where Z ∈ R2k,2k is orthogonal and symplectic and
R is of the form (8.11). Then

v̂1 = S2n,2k
P e1 = S2n,2k

P ZZT e1 =: Q2n,2ky

where y = ZT e1 and Q2n,2k = S2n,2k
P Z ∈ R2n×2k. Note that HQ2n,2k = Q2n,2kR.

Suppose now that

HQ2n,2k = Q2n,2kR with (Q2n,2k)TQ2n,2k = I2k,2k,

the columns of Q2n,2k are J–orthogonal and R is of the form (8.11). Let v̂1 = Q2n,2ky
with y ∈ R

2n,2k arbitrary. Now, for any m ∈ N, HmQ2n,2k = Q2n,2kRm and thus

Hmv̂1 = HmQ2n,2ky = Q2n,2kRmy ∈ Range(Q2n,2k).

Hence by (8.6) dim K(H, v̂1, 2k+1) ≤ rank (Q2n,2k) = 2k. Since H̃2k,2k is unreduced,
dim K(H, v̂1, j) = j + 1 for j = 1, ..., 2k. Hence dim K(H, v̂1, 2k + 1) = 2k and
therefore, ζk+1 = 0.

√

These theorems provide the motivation for the implicit restart developed in Sec-
tion 8.4. Theorem 8.5 suggests that one might find an invariant subspace by iteratively
replacing the starting vector with a linear combination of approximate eigenvectors
corresponding to eigenvalues of interest. Such approximations are readily available
through the Lanczos factorization.

114

8.2. Stopping Criteria. Now assume that we have performed k steps of the
symplectic Lanczos method and thus obtained the identity (after permuting back)

HS2n,2k = S2n,2kH2k,2k + ζk+1v̂k+1e
T
2k.

If the norm of the residual vector is small, the 2k eigenvalues of H2k,2k are approx-
imations to the eigenvalues of H . Numerical experiments indicate that the norm of
the residual rarely becomes small by itself. Nevertheless, some eigenvalues of H2k,2k

may be good approximations to eigenvalues of H . Let λ be an eigenvalue of H2k,2k

with the corresponding eigenvector y. Then the vector x = S2n,2ky satisfies

||Hx− λx|| = ||(HS2n,2k − S2n,2kH2k,2k)y||
= |ζk+1| |eT2ky| ||v̂k+1||. (8.12)

The vector x is referred to as Ritz vector and λ as Ritz value of H . If the last
component of the eigenvector y is sufficiently small, the right-hand side of (8.12) is
small and the pair {λ, x} is a good approximation to an eigenvalue-eigenvector pair
of H . Note that by Lemma 2.13 |eT2ky| > 0 if H2k,2k is unreduced. The pair (λ, x) is
exact for the nearby problem

(H − E)x = λx where E = ζk+1v̂k+1e
T
k (S2n,2k)TJ2,2n,

as

(H − E)x = (H − E)S2n,2ky

= S2n,2kH2k,2ky + ζk+1v̂k+1e
T
2ky − ES2n,2ky

= λx+ ζk+1v̂k+1e
T
2ky − ES2n,2ky.

A small ||E|| is not sufficient for the Ritz pair {λ, x} being a good approximation to an
eigenvalue-eigenvector pair of H . The explicit formation of the residual (HS2n,2k −
S2n,2kH2k,2k)y can be avoided when deciding about the numerical accuracy of an
approximate eigenpair, one can use the Ritz estimate |ζk+1| |eT2ky| ||v̂k+1|| instead.

It is well-known that for non-normal matrices the norm of the residual of an
approximate eigenvector is not by itself sufficient information to bound the error in
the approximate eigenvalue. It is sufficient however to give a bound on the distance
to the nearest matrix to which the given approximation is exact. In the following, we
will give a computable expression for the error. Assume that H2k,2k is diagonalizable

Y −1H2k,2kY =




−λ1

. . .

−λk
λ1

. . .

λk




= Λ;

Y can be chosen symplectic. Let X = S2n,2kY = [x1. . . . , x2k] and denote the residual
term ζk+1v̂k+1 by r̂k+1. Since HS2n,2k = S2n,2kH2k,2k + r̂k+1e

T
2k, it follows that

HS2n,2kY = S2n,2kY Y −1H2k,2kY + r̂k+1e
T
2kY

115

or HX = XΛ + r̂k+1e
T
2kY. Thus

Hxi = −λixi + y2k,ir̂k+1 and Hxk+i = λixk+i + y2k,k+ir̂k+1

for i = 1, . . . , k. From this, we can conclude relation for the left eigenvectors corre-
sponding to ±λ. Premultiplying

Hxi = −λixi + y2k,ir̂k+1

by J yields

JHxi = −λiJxi + y2k,iJr̂k+1.

As H is Hamiltonian

(HJ)Txi = −λiJxi + y2k,iJr̂k+1,

and

HT (Jxi) = λi(Jxi)− y2k,iJr̂k+1.

¿From this, we conclude

(Jxi)
TH = λi(Jxi)

T − y2k,ir̂Tk+1J.

Similarly, we obtain

(Jxk+i)
TH = −λi(Jxk+i)T + y2k,k+ir̂

T
k+1J.

Using Theorem 2’ of [73] we obtain that (−λi, xi, (Jxk+i)T) is an eigen-triplet of
H − F−λi

where

||F−λi
||2 = max { ||r̂k+1||2 |y2k,i|

||xi||2
,
||r̂Tk+1J ||2 |y2k,k+i|
||Jxk+i||2

}

= max { ||r̂k+1||2 |y2k,i|
||xi||2

,
||r̂k+1||2 |y2k,k+i|
||xk+i||2

}. (8.13)

Furthermore, when ||F−λi
|| is small enough, then

|θi + λj | ≤ cond(−λj)||F−λi
||+O(||F−λi

||2),
where θi is an eigenvalue of H and cond(−λj) is the condition number of the Ritz
value −λj

cond(−λj) =
||xi||2||Jxk+i||2
|xTk+iJxi|

.

Similarly, we obtain that {λi, xk+i, (Jxi)T } is an eigen-triplet of H − Fλi
where

||Fλi
||2 = max

i

{
||r̂k+1||2 |y2k,k+i|
||xk+i||2

,
||r̂Tk+1J ||2 |y2k,i|
||Jxi||2

}

= max
i

{ ||r̂k+1||2 |y2k,k+i|
||xk+i||2

,
||r̂k+1||2 |y2k,i|
||xi||2

}
. (8.14)

Consequently, as λi and −λi are treated alike,

||F−λi
||2 = ||Fλi

||2.
The symplectic Lanczos algorithm should be continued until ||F−λi

||2 is small, and
until cond(−λj)||F−λi

||2 is below a given threshold for accuracy. Note that as in the
Ritz estimate, in the criteria derived here the essential quantities are |ζk+1| and the
last component of the desired eigenvectors |y2k,i| and |y2k,k+i|.

116

8.3. Shift-and-invert techniques for the symplectic Lanczos method.
As noted before, eigenvalues of real Hamiltonian matrices occur in pairs {λ,−λ} or in
quadruples {λ,−λ, λ,−λ}. A structure-preserving algorithm will extract entire pairs
and quadruples intact. The symplectic Lanczos algorithm described above will, in
general, compute approximations to a few of the largest eigenvalues of a Hamiltonian
matrix H . Sometimes only a few of its smallest eigenvalues are needed. Since these
are also the largest eigenvalues of H−1, a Krylov subspace method can be applied to
H−1 to find them. Since H−1 inherits the Hamiltonian structure of H , the symplectic
Lanczos method is an appropriate method in the interest of efficiency, stability and
accuracy. In situations where some prior information is given, one might prefer to use
a shift before inverting. Specifically, if we know that the eigenvalues of interest lie
near τ , we might prefer to work with (H − τI)−1. Unfortunately, the shift destroys
the Hamiltonian structure. In light of the symmetry of the spectrum, one might think
of working with (H − τI)−1(H + τI)−1, in case τ is real or purely imaginary. All
eigenvalues near to ±τ are mapped simultaneously to values of large modulus. But
this matrix is not Hamiltonian as well, it is skew-Hamiltonian. The Cayley transform
(H − τI)−1(H + τI) might come to mind next, but this matrix is symplectic. In
case we would like to stay within the Hamiltonian structure, we can work with the
Hamiltonian matrix

H1 = H−1(H − τI)−1(H + τI)−1 = (H3 − τ2H)−1,

or

H2 = H(H − τI)−1(H + τI)−1 = (H − τ2H−1)−1,

for example. In order to obtain the eigenvalues λ of H from the eigenvalues ̟ of
these shifted Hamiltonian matrices, a cubic polynomial equation

λ3 − τ2λ− 1

̟
= 0

has to be solved in case H1 is used, while a quadratic polynomial equation

λ2 − 1

̟
λ− τ2 = 0 (8.15)

has to be solved in case H2 is used. In case a complex shift σ is used, we can work
with the Hamiltonian matrix

H3 = H−1(H−σI)−1(H+σI)−1(H−σI)−1(H+σI)−1 = (H5−(σ2+σ2)H3+|σ|4H)−1

or

H4 = H(H−σI)−1(H+σI)−1(H−σI)−1(H+σI)−1 = (H3−(σ2+σ2)H+|σ|4H−1)−1.

Similar as before, in order to obtain the eigenvalues λ of H from the eigenvalues of
the shifted matrices, polynomial equations of order five or four have to be solved: in
case H3 is used,

λ5 − (σ2 + σ2)λ3 + |σ|4λ− 1

̟
= 0

has to be solved, in case H4 is used,

λ4 − (σ2 + σ2)λ2 − 1

̟
λ+ |σ|4 = 0.

117

Let us consider the case H2 more closely. The eigenvalues λ of H are mapped to

̟ =
λ

λ2 − τ2
.

No matter whether τ ∈ R or τ ∈ iR, τ2 is always real. Hence, a real λ is mapped onto
a real ̟, a purely imaginary λ onto a purely imaginary ϕ and a complex λ onto a
complex ̟. Eigenvectors stay invariant, Hx = λx implies H−1x = 1

λx and therefore
H2x = ̟x as

H−1
2 x = (H − τ2H−1)x = (λ − τ2

λ
)x =

1

̟
x.

Unfortunately, two distinct eigenvalues λ1 and λ2 of H can be mapped to the same
eigenvalue ̟ of H2 by an unlucky choice of τ . Whenever τ2 = −λ1λ2 is chosen, this
is the case (Please note, that τ can be real or purely imaginary, hence τ2 can be a
negative real. Moreover, λ1 and λ2 might both be real or purely imaginary, hence the
above equation can be fulfilled.)

Applying the symplectic Lanczos process to H2 yields eigenvalues of the matrix
H2, but we actually want to compute eigenvalues of H . A straightforward approach to
compute the eigenvalues λ of H from the eigenvalues ̟ of H2 is to solve the quadratic
equation (8.15). It has the solution

λ1,2 =
1

2̟
±

√
1

4̟2
+ τ2. (8.16)

Unfortunately, only one of these solutions corresponds to an eigenvalue of H . In order
to decide which one is correct, let us assume that the symplectic Lanczos process is
run to achieve a negligible ζk+1,

(H2)PS
2n,2k
P ≈ S2n,2k

P H̃2k,2k
P (8.17)

(and, thatH is nonderogatory). The space spanned by the vectors {v1, w1, . . . , vk, wk}
is, up to rounding errors, an invariant subspace under (H2)P . Normally it is also in-
variant under HP as H2 is a function of H . The space spanned by {v1, w1, . . . , vk, wk}
can fail to be invariant under H only if two distinct eigenvalues of H are mapped to
the same eigenvalue of H2.

Let us assume for the moment that the shift τ is chosen such that this does not
happen; that is τ2 6= −λ1λ2 for all eigenvalues λ1, λ2 of H . If the SR algorithm is
used to compute the eigenvalues and eigenvectors of H̃2k,2k

P

H̃2k,2k
P S̃P = S̃P ĤP ,

then the eigenvalues λj of H can be obtained via (8.16). In order to decide, which of
the two possible solutions to choose, we can now check the residual

||HP ŝj − ŝjλj ||F

where ŝj denotes the jth column of ŜP = S2n,2k
P S̃P and λj has been obtained using

the eigenvalue ̟ of Ĥ corresponding to the jth column of S̃. In case the residual is
small, the λj should be accepted as an eigenvalue of H .

A different approach circumventing the difficulties with the above approach in
order to determine the eigenvalues of H from the Lanczos recursion (8.17) is to

118

calculate the Ritz values of H with respect to the space spanned by the vectors
{v1, w1, . . . , vk, wk} [100]; that is, we calculate the eigenvalues λi of

X = J2k,2k
P (S2n,2k

P)TJPHPS
2n,2k
P .

As X is Hamiltonian, but not of J-Hessenberg form, it is suggested to compute its
eigenvalues by the numerically backward stable structure-preserving Hapack routine
’haeig’ [23]. Moreover, the residual

||HPS
2n,2k
P − S2n,2k

P X ||F

can be used to check whether or not the space spanned by the vectors {v1, w1, . . . , vk,
wk} really is invariant under H . Hence, this approach can be used in order to detect
if an unlucky shift τ has been chosen.

In order to apply the symplectic Lanczos algorithm to any of the matrices Hj ,
j = 1, . . . , 4, we need to be able to multiply the matrix Hj by an arbitrary vector
at reasonable cost, since this operation is performed repeatedly by the algorithm.
Thus,we need to be able to apply operators of the form (H − τI)−1 inexpensively.
The Hamiltonian structure of H should be taken into account here. In case additional
information about H is known, this should be made use of as well. If, e.g., H is given
in the form

H =

[
A−BCT −BBT
CCT −(AT − CBT)

]
=

[
A 0
0 −AT

]
+

[
−B
C

] [
CT BT

]
.

Such Hamiltonian matrices arise, e.g, in linear quadratic optimal control problems
and the solution of continuous-time algebraic Riccati equations [12, 98, 123]. The
Sherman-Morrison-Woodbury formula [65] helps in computing the inverse of H :

H−1 =

[
A−1 0
0 −A−T

] (
I −

[
−B
C

]
(I + F)−1

[
CT BT

] [
A−1 0
0 −A−T

])

=

[
A−1 0
0 −A−T

]
+

[
B̂

Ĉ

]
(I + F)−1

[
ĈT − B̂T

]
,

where

B̂ = A−1B,

Ĉ = A−TC,

F =
[
CT BT

] [
A−1 0
0 −A−T

] [
−B
C

]

=
[
CT BT

]
[
−B̂
−Ĉ

]

= −(CT B̂ +BT Ĉ) = −(CTA−1B + (CTA−1B)T).

Hence, in order to apply H−1 to an arbitrary vector, the inverse of A, AT and (I−F)
is needed. Computing the LU decomposition of A = LU beforehand, one can readily
apply A−1 = U−1L−1 and A−T = L−TU−T using the standard backward and forward
substitution algorithms. The inverse of I +F is usually easy to compute, as typically
in applications like linear quadratic optimal control the matrices B and C only have

119

a few columns (as even often the multi-input-multi-output systems have only a few
inputs and outputs). Hence, I + F often is a small matrix. For a single-input-single-
output system, B and C are just vectors, that is, F is a scalar value. The inverse of
I + F can easily be obtained.

Using the same approach, we obtain for a shifted matrix H − τI

(H − τI)−1 =

([
(A− τI) 0

0 −(A+ τI)T

]
+

[
−B
C

] [
CT BT

])−1

=

(
D +

[
−B
C

] [
CT BT

])−1

= D−1 −D−1

[
−B
C

]
(I + F)−1

[
CT BT

]
D−1

=

[
(A− τI)−1 0

0 −(A+ τI)−T

]
+

[
B̂

Ĉ

]
(I + F)−1

[
C̃T B̃T

]
,

where

B̂ = (A− τI)−1B,

Ĉ = (A+ τI)−TC,

B̃ = −(A+ τI)−1B,

C̃ = (A− τI)−TC,

F =
[
CT BT

]
D−1

[
−B
C

]

=
[
CT BT

]
[
−B̂
−Ĉ

]

= −(CT B̂ +BT Ĉ) = −(CT (A− τI)−1B +BT (A+ τI)−TC).

Hence, once the LU decomposition of (A− τI) and (A + τI) have been determined,
(H − τI)−1 can be applied to any vector in an efficient way.

As

(H + τI)−1 =

([
(A+ τI) 0

0 −(A− τI)T
]

+

[
B
−C

] [
CT BT

])−1

no additional LU decomposition are required in order to apply (H+τI)−1 to a vector.
In case τ is a complex shift, we need to apply (H−τI)−1, (H+τI)−1, (H−τI)−1

and (H+τI)−1 to a vector. As H is a real matrix, we have (H−τI)−1 = (H − τI)−1

and (H + τI)−1 = (H + τI)
−1

. Hence, once the LU decomposition of (A − τI) and
(A + τI) have been determined, all four factors can be applied to any vector in an
efficient way.

Once the LU decompositions A − τI and A + τI are available, the operator H4

can be set up. This requires
• 16 triangular solves and
• 4 scalar products.

The application of the operator H4 to a vector now requires
• 16 triangular solves,

120

• 1 matrix-vector product with A and 1 matrix-vector product with AT ,
• 16 scalar products and
• 16 saxpy operations.

Efficient implementations for computing the required LU decompositions are
provided, e.g, by the SuperLU [52], the UMFPACK [49] or the PARDISO package
[121]. The ideas presented here have already been used by several authors, see, e.g.,
[57, 101, 132].

A different class of applications in which large Hamiltonian eigenproblems arise
for which the Hamiltonian matrix H allows for an efficient implementation of the
shift-and-invert approach are quadratic eigenproblems of the form

(λ2M + λG+K)u = 0, (8.18)

where M,G,K ∈ R
n×n, and M = MT > 0, G = −GT and K = KT > 0. It

can be shown [7, 101, 135] that the eigenproblem (8.18) has a Hamiltonian eigen-
structure, that is, the eigenvalues are symmetric with respect to both axes. In other
words, if λ ∈ C is an eigenvalue with Re(λ) 6= 0, then so are −λ, λ,−λ, while if
λ ∈ R or iR is an eigenvalue, then so is −λ. It is well known that such quadratic
eigenvalue problems can be turned into equivalent generalized ones by suitable lin-
earization. If a structure-preserving linearization is used, the resulting eigenproblem
will exhibit the Hamiltonian structure (for a general discussion, see, e.g., [95]). In
[7, 101, 135] several linearizations for (8.18) have been proposed. With y = λMx the
skew-Hamiltonian/Hamiltonian pencil

λN z −Hz = λ

[
I G
0 I

] [
y
x

]
−

[
0 −K

M−1 0

] [
y
x

]
= 0

is obtained. Here H is a Hamiltonian matrix, that is and N is a skew-Hamiltonian
matrix, that is

(JN)T = −JN .

Since N is invertible, the pencil λN −H is regular. The skew-Hamiltonian matrix N
can be factorized as

N = ZZ =

[
I 1

2G
0 I

] [
I 1

2G
0 I

]
.

Thus,

λN −H = Z(λI −Z−1HZ−1)Z = Z(λI −H)Z

with the Hamiltonian matrix H = Z−1HZ−1. Since

Z−1 =

[
I − 1

2G
0 I

]
,

we have

H =

[
I − 1

2G
0 I

] [
0 −K

M−1 0

] [
I − 1

2G
0 I

]
. (8.19)

There are other linearizations which yield the same standard eigenvalue problem for
the Hamiltonian matrix H [101].

121

The inverse of H is given by

H−1 =

[
I 1

2G
0 I

] [
0 M−1

K 0

] [
I 1

2G
0 I

]
,

while the inverse of (H − τI) is given by

(H − τI)−1 =

[
I 1

2G+ τM
0 I

] [
0 M

−Q(τ)−1 0

] [
I 1

2G+ τM
0 I

]
,

with Q(τ) = τ2M +τG+K. Once a LU decomposition of Q(τ) is known, (H−τI)−1

can be applied to a vector in an efficient way. It is easy to see that the same LU
decomposition is needed for applying (H + τI)−1, (H − τI)−1 and (H + τI)−1 to a
vector. As Q(τ)T = Q(−τ) we have

(H + τI)−1 =

[
I 1

2G− τM
0 I

] [
0 M

−Q(τ)−T 0

] [
I 1

2G− τM
0 I

]
,

and as H is a real matrix, we have (H − τI)−1 = (H − τI)−1
and (H + τI)−1 =

(H + τI)
−1

for a complex τ . Hence, once the LU decomposition of Q(τ) has been
determined, all four factors can be applied to any vector in an efficient way. In case
one would like to set up H2(τ) or H4(τ) we have to multiply by H from (8.19) as
well. On first glimpse, one might think that for this the inverse of M is needed. In
the following we will see that the multiplication by H essentially comes for free. For
this, first consider the skew-Hamiltonian operator

R2(τ) = (H − τI)−1(H + τI)−1, τ ∈ R, iR, (8.20)

which is a suitable shift-and-invert operator for the skew-Hamiltonian Arnoldi algo-
rithm SHIRA [101]. It is observed in [101] that this operator can be expressed as

R2(τ) =

[
M 1

2G
0 I

] [
I τI
0 I

] [
0 I

−Q(τ)−1 0

] [
I G
0 I

]

×
[

0 I
−Q(τ)−T 0

] [
I −τI
0 I

] [
I 1

2G
0 M

]

A detailed analysis of the cost for applying R2(τ) to a vector is provided in [101].
When using H2(τ), we have to multiply R2(τ) from the left (or the right) by H as
given in (8.19). Carefully checking the resulting expression, we obtain that

H2(τ) =

[
− 1

2G −K
I 0

] [
I τI
0 I

] [
0 I

−Q(τ)−1 0

] [
I G
0 I

]

×
[

0 I
−Q(τ)−T 0

] [
I −τI
0 I

] [
I 1

2G
0 M

]
.

Thus, the only difference in the application of H2(τ) as compared to R2(τ) is that
one multiplication by the mass matrix M is replaced by a multiplication with the
stiffness matrix K. As in the applications considered here, the sparsity patterns of
M and K are usually the same, the cost for applying H2(τ) is the same as for R2(τ).
In contrast, applying H1(τ) requires additionally the inversion of K which makes its
application less efficient (as observed in [113]). Similar observations hold for H4(τ)
compared to H3(τ).

Once the LU decompositions of Q(τ) is available, the operators H2 and H4 can
be set up. The application of the operator H2 to a vector now requires

122

• 4 triangular solves,
• 1 matrix-vector product with M , 1 matrix-vector product with K, 3 matrix-

vector products with G, and
• 5 saxpy operations.

The application of the operator H4 to a vector requires
• 8 triangular solves,
• 3 matrix-vector products with M , 1 matrix-vector product with K, 5 matrix-

vector products with G, and
• 9 saxpy operations.

More on the linearization of the quadratic eigenvalue problem and the efficient
computation of the matrix-vector products can be found in [7, 101].

8.4. A Restarted Symplectic Lanczos Method. Given that a 2n×2k matrix
S2k
P is known such that

HPS
2n,2k
P = S2n,2k

P H̃2k,2k
P + ζk+1vk+1e

T
2k (8.21)

as in (8.3), an implicit Lanczos restart computes the Lanczos factorization

HP S̆
2n,2k
P = S̆2n,2k

P H̆2k,2k
P + ζ̆k+1v̆k+1e

T
2k (8.22)

which corresponds to the starting vector

v̆1 = p(HP)v1

for a suitable polynomial p without having to explicitly restart the Lanczos process
with the vector v̆1. Such an implicit restarting mechanism will now be derived anal-
ogous to the technique introduced in [66, 126].

For reasons of simplicity, let us first consider

v̆1 = ρ(HP − µI)v1
although this single shifted restart will not be used in practice. As eigenvalues of HP

occur in pairs or quadruples, this should be reflected in the implicit restart. For any
permuted symplectic 2k × 2k matrix SP , (8.21) can be re–expressed as

HP (S2n,2k
P SP) = (S2n,2k

P SP)(S−1
P H̃2k,2k

P SP) + ζk+1vk+1e
T
2kSP .

Defining S̆2n,2k
P = S2n,2k

P SP , H̆2k,2k
P = S−1

P H̃2k,2k
P SP this yields

HP S̆
2n,2k
P = S̆2n,2k

P H̆2k,2k
P + ζk+1vk+1e

T
2kSP . (8.23)

Let sij be the (i, j)th entry of SP . If we choose SP from the permuted SR decom-

position H̃2k,2k
P − µI = SPRP , then it is easy to see that SP is an upper Hessenberg

matrix. Thus the residual term in (8.23) is

ζk+1vk+1(s2k,2k−1e
T
2k−1 + s2k,2ke

T
2k).

In order to obtain a residual term of the desired form ”vector times eT2k” we have to
truncate off a portion of (8.23). Rewriting (8.23) as

HP S̆
2n,2k
P = [S̆2n,2k−2

P , v̆k, w̆k, vk+1]




H̆2k−2,2k−2
P 0 ζ̆ke2k−3

ζ̆ke
T
2k−2 δ̆k β̆k
0 ν̆k −δ̆k
0 ζk+1s2k,2k−1 ζk+1s2k,2k




123

we obtain as a new Lanczos identity

HP S̆
2n,2k−2
P = S̆2n,2k−2

P H̆2k−2,2k−2
P + ζ̆k v̆ke

T
2k−2. (8.24)

Here, ζ̆k, δ̆k, β̆k, ν̆k denote parameters of H̆2k,2k
P , ζk+1 a parameter of H̃2k,2k

P . In

addition, v̆k, w̆k are the last two column vectors from S̆2n,2k
P , while vk+1 is the next

to last column vector of S2n,2k
P .

As the space spanned by the columns of S2n,2k = Pn
T

S2n,2k
P P k is symplectic, and

SP is a permuted symplectic matrix, the space spanned by the columns of S̆2n,2k−2 =

Pn
T

S̆2n,2k−2
P P k−1 is symplectic. Thus (8.24) is a valid Lanczos factorization for the

new starting vector v̆1 = ρ(HP − µI)v1. Only one additional step of the symplectic
Lanczos algorithm is required to obtain (8.22) from (8.21).

Note that in the symplectic Lanczos process the vectors vj of S2n,2k
P satisfy the

condition ||vj ||2 = 1 and the parameters δj are chosen such that vj and wj are
orthogonal. Due to the multiplication by SP , in general, this is no longer true for the
parameters δ̆j from H̆2k,2k

P and for the odd numbered column vectors of S̆2n,2k
P and

thus for the new Lanczos factorization (8.24).

In case, we choose SP from the permuted SR decomposition (H̃2k,2k
P −µI)(H̃2k,2k

P +
µI) = SPRP (for µ ∈ R or µ = iw,w ∈ R), then SP is no longer upper Hessenberg,
but has an additional lower subdiagonal. Hence the residual term in (8.23) is of the
form

ζk+1vk+1(s2k,2k−2e
T
2k−2 + s2k,2k−1e

T
2k−1 + s2k,2ke

T
2k).

In order to obtain a residual term of the desired form ”vector times eT2k”, as before,
we have to truncate off a portion of (8.23). Rewriting (8.23) as

HP S̆
2n,2k
P = [S̆2n,2k−4

P , v̆k−1, w̆k−1, v̆k, w̆k, vk+1]X

where

X =




H̆2k−4,2k−4
P 0 ζ̆k−1e2k−5 0 0

ζ̆k−1e
T
2k−4 δ̆k−1 β̆k−1 0 ζ̆k

0 ν̆k−1 −δ̆k−1 0 0

0 0 ζ̆k δ̆k β̆k
0 0 0 ν̆k −δ̆k
0 0 ζk+1s2k,2k−2 ζk+1s2k,2k−1 ζk+1s2k,2k




we obtain as a new Lanczos identity

HP S̆
2n,2k−4
P = S̆2n,2k−4

P H̆2k−4,2k−4
P + ζ̆k−1v̆k−1e

T
2k−4. (8.25)

Similarly, in case, we choose SP from the permuted SR decomposition (H̃2k,2k
P −

µI)(H̃2k,2k
P +µI)(H̃2k,2k

P −µI)(H̃2k,2k
P +µI) = SPRP (for µ ∈ C, Re(µ) 6= 0), then SP

is no longer upper Hessenberg, but has three additional lower subdiagonals. Hence
the residual term in (8.23) is of the form

ζk+1vk+1(s2k,2k−4e
T
2k−4 + s2k,2k−3e

T
2k−3 + s2k,2k−2e

T
2k−2 + s2k,2k−1e

T
2k−1 + s2k,2ke

T
2k).

In order to obtain a residual term of the desired form ”vector times eT2k”, as before,
we have to truncate off a portion of (8.23). Rewriting (8.23) as

HP S̆
2n,2k
P = [S̆2n,2k−6

P , v̆k−2, w̆k−2, v̆k−1, w̆k−1, v̆k, w̆k, vk+1]X

124

Algorithm : k–step restarted symplectic Lanczos method

perform k steps of the symplectic Lanczos algorithm to compute S2n,2k
P

and H̃2k,2k
P

while ||ζk+1vk+1|| > tol
perform q additional steps of the symplectic Lanczos method to

compute S
2n,2(k+q)
P and H̃

2(k+q),2(k+q)
P

select q shifts (keep pairs and quadruples)

obtain S2n,2k
P and H̃2k,2k

P from S
2n,2(k+q)
P and H̃

2(k+q),2(k+q)
P by

implicit restarts
end

Table 8.2
k–step restarted symplectic Lanczos method

where

X =




H̆2k−6,2k−6
P 0 ∗ 0 0 0 0

ζ̆k−2e
T
2k−6 ∗ ∗ 0 ∗ 0 0

0 ∗ ∗ 0 0 0 0
0 0 ∗ ∗ ∗ 0 ∗
0 0 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ ∗




we obtain as a new Lanczos identity

HP S̆
2n,2k−6
P = S̆2n,2k−6

P H̆2k−6,2k−6
P + ζ̆k−2v̆k−2e

T
2k−6. (8.26)

The extension of this technique to the multiple shift case is straightforward.
The implicitly restarted symplectic Lanczos method will be used to compute a

few eigenvalues and associated eigenvectors. For this, we fix the number of steps
in the Lanczos process at a prescribed value k of modest size. An attempt will be
made to iteratively update the starting vector v1 by implicit restarts in order to force
the residual vector ζk+1vk+1e

T
2k to zero. That is, we propose the k–step restarted

symplectic Lanczos method as given in Table 2 (analogous to [126]).
A detailed discussion of this approach along the lines of the discussion in [126]

can be given. The approach has several advantages over the standard symplectic
Lanczos method. J–orthogonality can be maintained at reasonable computational
costs. There is fixed storage requirement and we can use deflation techniques similar
to those associated with the SR iteration.

Remark 8.7. In case in the symplectic Lanczos algorithm, δm is chosen to be
equal to 0 for all m, the implicit restart can be rewritten using the HR instead of the
SR algorithm, see [139] for details.

Numerous choices are possible for the selection of the p shifts. One possibility is

to choose p ”exact” shifts with respect to H̃
2(k+p),2(k+p)
P . That is, first the eigenvalues

of H̃
2(k+p),2(k+p)
P are computed (by the SR algorithm), then p unwanted eigenvalues

are selected. One choice for this selection might be: sort the eigenvalues by decreasing
values of the real parts. There will be k + p eigenvalues with nonnegative real parts

Re (λ1) ≥ . . . ≥ Re (λk) ≥ Re (λk+1) ≥ . . . ≥ Re (λk+p) ≥ 0

≥ −Re (λk+p) ≥ . . . ≥ −Re (λk+1) ≥ −Re (λk) ≥ . . . ≥ −Re (λ1).

125

Select the 2p eigenvalues with real part closest to 0 as shifts. If λk+1 is complex with
|λk| = |λk+1|,Re (λk) 6= 0, then we either have to choose 2p+ 2 shifts or just 2p− 2

shifts, as λk+1 belongs to a quadruple pair of eigenvalues of H̃
2(k+p),2(k+p)
P and in

order to preserve the symplectic structure either λk and λk+1 have to be chosen or
none.

A different possibility of choosing the shifts is to keep those eigenvalues that
are good approximations to eigenvalues of H . That is, eigenvalues for which (8.12)
or (8.13 and (8.14) is small. Again we have to make sure that our set of shifts is
complete in the sense described above.

Choosing eigenvalues of H̃
2(k+p),2(k+p)
P as shifts has an important consequence

for the next iterate. Assume for simplicity that H̃
2(k+p),2(k+p)
P is diagonalizable. Let

λ(H̃
2(k+p),2(k+p)
P) = {θ1, . . . , θ2k} ∪ {µ1, . . . , µ2p} be a disjoint partition of the spec-

trum of H̃
2(k+p),2(k+p)
P , where the set of the µj contain complete pairs and quadruples

of eigenvalues. Selecting the exact shifts µ1, . . . , µ2p in the implicit restart, yields the
shift polynomial

p(λ) = (λ− µ1) · · · (λ − µ2p)

and

p(H̃2(k+p),2(k+p)) = SPRP .

That is, we obtain

S−1
P H̃2(k+p),2(k+p)SP = H̆

2(k+p),2(k+p)
P =

[
H̆2k,2k
P X
0 Y

]

where λ(H̆2k,2k
P) = {θ1, . . . , θ2k} and λ(Y) = {µ1, . . . , µ2p}. This follows from (4.2).

Moreover, the new starting vector has been implicitly replaced by the sum of 2k
approximate eigenvectors:

v̆1 = S
2n,2(k+p)
P SP e1 =

1

ρ
S

2n,2(k+p)
P p(H̃

2(k+p),2(k+p)
P)e1 =

1

ρ
S

2n,2(k+p)
P

2k∑

j=1

ζjyj

where ρ = eT1 RP e1, H̃
2(k+p),2(k+p)
P yj = θjyj , and ζj is properly chosen. The last

equation follows since p(H̃
2(k+p),2(k+p)
P)e1 has no component along an eigenvector of

H̃
2(k+p),2(k+p)
P associated with µj , 1 ≤ j ≤ 2p. Hence v̆1 is a linear combination of the

2k Ritz vectors associated with the Ritz values that are kept:

v̆1 = ρ

2k∑

j=1

ζjxj where S
2n,2(k+p)
P yj = xj .

It should be mentioned that the k– step restarted symplectic Lanczos method as
in Table 8.2 with exact shifts builds a J–orthogonal basis for a number of generalized
Krylov subspaces simultaneously. The subspace of length 2(k+p) generated during a
restart using exact shifts contains all the Krylov subspaces of dimension 2k generated
from each of the desired Ritz vectors. We have already seen that after the implicit
restart the new starting vector of the Lanczos recursion is a combination of Ritz
vectors. Assuming as above that 2p exact shifts are used, an induction argument using

126

the same idea as above shows that the first 2k columns of S
2n,2(k+p)
P are combinations

of the desired 2k Ritz vectors. (The only difference to the proof above is in showing

that for 2 ≤ j ≤ 2k, SP ej can be written as p(H̃
2(k+p),2(k+p)
P)w for some vector w.

Then S
2n,2(k+p)
P SP ej is, like v̆1, a combination of the desired Ritz vectors.) Hence,

during the next Lanczos run, the subspace of degree 2k is span{x1, . . . , x2k} where

S
2n,2(k+p)
P yj = xj as above. Let the subspace generated during that run be given by

N = span{x1, . . . , x2k, vk+1, wk+1, . . . , vk+p, wk+p}

or equivalently,

N = span{x1, . . . , x2k, vk+1, HP vk+1, H
2
P vk+1, . . . , H

2p+1
P vk+1}.

We will now show that this subspace is equivalent to the subspaces

Mj = span{x1, . . . , x2k, HPxj , . . . , H
2p+2
P xj}

for all j. The Lanczos run under consideration starts from the equation

HPS
2n,2k
P = S2n,2k

P H̃2k,2k
P + ζk+1vk+1e

T
2k.

For a Ritz vector x = S2n,2k
P y and the corresponding Ritz value λ (that is, H̃2k,2k

P y =
λy) we have

HPx− λx = ζk+1vk+1e
T
2ky.

Hence, with α = eT2ky ∈ R we can rewrite

HPx = λx+ αζk+1vk+1. (8.27)

Therefore, for all Ritz vectors xj , j = 1, . . . , 2k, HPxj ∈ N . Then

H2
Px = λHPx+ αζk+1HP vk+1.

Hence, H2
Px is a combination of HPx, and HP vk+1, and therefore for all Ritz vectors

xj , j = 1, . . . , 2k, H2
Pxj ∈ N . Similar for other i, Hi

Px is contained in the subspace
N . For example, Hℓ

Px is a linear combination of Hℓ−1
P x and Hℓ−1

P vk+1, and therefore
for all Ritz vectors xj , j = 1, . . . , 2k, Hℓ

Pxj ∈ N . As dim(N) = dim(Mj), N andMj

span the same space.
√

A similar observation for Sorensen’s restarted Arnoldi method with exact shifts
was made by Morgan in [104]. For a discussion of this observation see [104] or [89].
Morgan infers ’the method works on approximations to all of the desired eigenpairs
at the same time, without favoring one over the other’ [104, p. 1220, l. 7–8 from the
bottom]. This remark can also be applied to the method presented here.

Moreover, the implicitly restarted symplectic Lanczos method can be interpreted
as a non-stationary subspace iteration. An analogous statement for the implicitly
restarted Arnoldi method is given in [87]. Assume that we have computed

HPS
2n,2m
P = S2n,2m

P H̃2m,2m
P + rm+1e

T
2m, (8.28)

a length m = k + p symplectic Lanczos reduction. As p shifts for the implicit restart
we have chosen {µ1, . . . , µp} such that we apply the polynomial

p2p(H̃) = (H̃ − µpI)(H̃ + µpI) · . . . · (H̃ − µ1I)(H̃ + µ1I)

127

during the implicit restart. It is fairly easy to see that

p2p(HP)S2n,2k
P = S2n,2m

P p2p(H̃
2m,2m
P)[e1, e2, . . . , e2k]. (8.29)

Applying p2p(HP) to the first 2k columns of S2n,2m
P is equivalent to the basis repre-

sentation given by the first 2k columns of S2n,2m
P p2p(H̃

2m,2m
P). Applying an implicit

restart to (8.28) using the spectral function p2p, we essentially apply the SR algorithm

with shifts ±µ1, . . . ,±µp to H̃2m,2m
P

H̃2m,2m
P SP = SP H̆

2m,2m
P .

SP ∈ R2m×2m is a symplectic, upper triangular matrix with m− k additional subdi-

agonals. Write SP as SP = [S
[1]
P S

[2]
P S

[3]
P] with S

[1]
P ∈ R2m×2k, S

[2]
P ∈ R2m×2, S

[3]
P ∈

R2m×(2m−2k−2). Then

H̃2m,2m
P S

[1]
P = [S

[1]
P S

[2]
P S

[3]
P]




H̆2k,2k
P

ζ̆k+1e
T
2k

0
0


 .

Postmultiplying (8.28) with S
[1]
P and using eT2mS

[1]
P = 0 which is due to the special

form of SP (upper triangular with m− k additional subdiagonals) we obtain

HPS
2n,2m
P S

[1]
P = S2n,2m

P H̃2m,2m
P S

[1]
P + rm+1e

T
2mS

[1]
P

= S̆2n,2k
P H̆2k,2k

P + ζ̆k+1S
2n,2m
P S

[2]
P e1e

T
2k

= S̆2n,2k
P H̆2k,2k

P + r̆k+1e
T
2k.

where S̆2n,2k
P = S2n,2m

P S
[1]
P . This is just the implicitly restarted symplectic Lanczos

recursion obtained by applying one implicit restart with the polynomial p2p. Applying

the SR algorithm with shifts ±µ1, . . . ,±µp to H̃2m,2m
P is equivalent to computing the

permuted SR decomposition

p2p(H̃
2m,2m
P) = SPRP .

Substituting this into (8.29) we obtain

p2p(HP)S2n,2k
P = S2n,2m

P SPRP [e1, e2, . . . , e2k] = S̆2n,2k
P R̆P ,

where R̆P is a 2k × 2k upper triangular matrix. This equation describes a nonsta-
tionary subspace iteration. As one step of the implicitly restarted symplectic Lanczos
process computes the new subspace spanned by the columns of S̆2n,2k

P from S2n,2k
P ,

the implicitly restarted symplectic Lanczos algorithm can be interpreted as a nonsta-
tionary subspace iteration.

In the above discussion we have assumed that the permuted SR decomposition

p(H̃
2(k+p),2(k+p)
P) = SPRP exists. Unfortunately, this is not always true. During the

bulge-chase in the implicit SR step, it may happen that an νj is zero (or almost zero).
In that case no reduction to Hamiltonian J-Hessenberg form with the corresponding
first column v̆1 does exist. In Section 8.8 we will prove that a serious breakdown
in the symplectic Lanczos algorithm is equivalent to such a breakdown of the SR

128

decomposition. Moreover, it may happen that an element ζj is zero (or almost zero)
such that

H̆
2(k+p),2(k+p)
P =

[
H̆2j,2j
P

ĤP

]
.

The matrix H̆
2(k+p),2(k+p)
P is split, an invariant subspace of dimension 2j is found. If

j ≥ k and all shifts have been applied, then the iteration is halted. Otherwise we can
continue as in the procedure described by Sorensen in [126, Remark 3].

8.4.1. Locking and Purging. As the iteration progresses, some of the Ritz val-
ues may converge to eigenvalues of H long before the entire set of wanted eigenvalues
have. These converged Ritz values may be part of the wanted or unwanted portion
of the spectrum. In either case it is desirable to deflate the converged Ritz values
and corresponding Ritz vectors from the unconverged portion of the factorization. If
the converged Ritz value is wanted then it is necessary to keep it in the subsequent
factorizations; if it is unwanted then it must be removed from the current and the
subsequent factorizations.

Lehoucq and Sorensen develop in [89, 127] locking and purging techniques to
accomplish this in the context of nonsymmetric matrices and the restarted Arnoldi
method. A locking operation decouples converged approximate eigenvalues and asso-
ciated invariant subspaces from the active part of the iteration. A purging operation
removes unwanted, but converged eigenpairs. Locking has the effect of isolating an
approximate eigenspace once it has converged to a certain level of accuracy and then
forcing subsequent Arnoldi vectors to be orthogonal to the converged subspace. With
this capability, additional instances of a multiple eigenvalue can be computed to the
same specified accuracy without the expense of converging them to unnecessarily
high accuracy. Purging allows the deletion of converged but unwanted Ritz values
and vectors from the Krylov space when they are not purged naturally by the restart-
ing scheme. With the aid of these deflation schemes, convergence of the implicitly
restarted Arnoldi method can be greatly improved. Computational effort is also re-
duced. A slightly improved variant of those deflation schemes is presented in [128].
In the Arnoldi setting, the projected matrix T is of upper Hessenberg form. Small
subdiagonal elements of T may occur during the implicit restarting. However, it is
usually the case that there are converged Ritz values appearing in the spectrum of
T long before small subdiagonal elements appear. The convergence is usually de-
tected through observation of a small last component in an eigenvector y of T . It
turns out that in the case of a small last component of y, there is an orthogonal
similarity transformation of T that will give an equivalent Arnoldi factorization with
a slightly perturbed T that does indeed have a zero subdiagonal. This is the basis of
the deflation scheme used for locking and purging.

The situation for the symplectic Lanczos process is quite similar to the one in the
Arnoldi process. It is usually the case that there are converged Ritz values appearing
in the spectrum of H̃2k,2k long before small subdiagonal elements in the (1, 2) block
appear. The convergence is usually detected through observation of a small last
component in an eigenvector y of H̃2k,2k. As in the context of an Arnoldi process, it
turns out that in the case of a small last component of y, there is a symplectic similarity
transformation of H̃2k,2k that will give an equivalent symplectic Lanczos factorization
with a slightly perturbed H̃2k,2k that does indeed have a zero subdiagonal element in
the (1, 2) block.

129

As deflating converged Ritz values from an Arnoldi decomposition is a complicated
affair, we refrain from presenting the details for the symplectic Lanczos factorization.
Instead we will consider a Krylov-Schur-like restarting method (see Section 8.5) as
suggested by Stewart [130, 131]. While the implicitly restarted symplectic Lanczos
factorization can restart with an arbitrary filter polynomial, the Krylov-Schur-like
method cannot do that. When it comes to exact shifts the Krylov-Schur-like method
is to be preferred because it is more reliable.

8.5. Hamiltonian Krylov-Schur-type Restarting. Most of the complica-
tions in the purging and deflating algorithms described by Lehoucq and Sorensen
[89, 127, 128] come from the need to preserve the structure of the decomposition, in
particular (for the Arnoldi situation), to preserve the Hessenberg form and the zero
structure of the vector eTk . In [130], Stewart shows how to relax the definition of an
Arnoldi decomposition such that the purging and deflating problems can be solved in
a natural and efficient way. Since the method is centered about the Schur decompo-
sition of the Hessenberg matrix, the method is called the Krylov-Schur method. In
[132], a Krylov-Schur-like method for the symplectic Lanczos method is developed.
Here we follow closely the derivations in [130, 131, 132].

So far, we have considered symplectic Lanczos factorizations of order 2k of the
form (8.3)

HPS
2n,2k
P = S2n,2k

P H̃2k,2k
P + ζk+1vk+1e

T
2k.

More generally, we will speak of a Hamiltonian Krylov-Schur-type decomposition of
order 2k if 2k+ 1 linearly independent vectors u1, u2, . . . , u2k+1 ∈ R2n are given such
that

HPU
2n,2k
P = U2n,2k

P B2k,2k
P + u2k+1b

T
2k+1, (8.30)

where U2n,2k
P = [u1, u2, . . . , u2k]. Equivalently, we can write

HPU
2n,2k
P = U2n,2k+1

P B̂2k,2k
P ,

where U2n,2k+1
P = [U2n,2k

P u2k+1] and

B̂2k,2k
P =

[
B2k,2k
P

bT2k+1

]
.

This definition removes practically all the restrictions imposed on a symplectic Lanc-
zos decomposition. The vectors of the decomposition are not required to be JP -
orthogonal and the vector b2k+1 and the matrix B2k,2k

P are allowed to be arbitrary.

If the columns of U2n,2k+1
P are JP -orthogonal, we say that the Hamiltonian

Krylov-Schur-type decomposition is JP -orthogonal. Please note, that no particu-
lar form of BP is assumed here. It is uniquely determined by the basis U2n,2k+1

P . For

if [V 2n,2k
P vP]T is any left inverse for U2n,2k+1

P , then it follows from (8.30) that

B2k,2k
P = (V 2n,2k

P)THPU
2n,2k
P

and

bT2k+1 = vTPHPU
2n,2k
P .

130

In particular, B2k,2k
P is a Rayleigh quotient of HP .

We say that the Hamiltonian Krylov-Schur-type decomposition spans the space
spanned by the columns of U2n,2k+1

P . Two Hamiltonian Krylo-Schur-type decompo-
sitions spanning the same space are said to be equivalent.

For any nonsingular matrix Q ∈ R2k,2k we obtain from (8.30) an equivalent
Hamiltonian Krylov-Schur-type decomposition

HP (U2n,2k
P Q) = (U2n,2k

P Q)(Q−1B2k,2k
P Q) + u2k+1(b

T
2k+1Q).

The two Hamiltonian Krylov-Schur-type decompositions are said to be similar to each
other.

If, in (8.30) the vector u2k+1 can be written as u2k+1 = γû2k+1 + U2n,2k
P a, γ 6= 0,

then we have that the Hamiltonian Krylov-Schur-type decomposition

HPU
2n,2k
P = U2n,2k

P (BP + abT2k+1) + γû2k+1b
T
2k+1

is equivalent to the original one, as the space spanned by the columns of [U2n,2k
P u2k+1]

is the same as the space spanned by the columns of [U2n,2k
P û2k+1].

Theorem 8.8. Every Hamiltonian Krylov-Schur-type decomposition is equivalent
to a (possibly reduced) symplectic Lanczos factorization.

Proof. We begin with the Hamiltonian Krylov-Schur-type decomposition

HPUP = UPBP + ubT ,

where for convenience we have dropped all sub- and superscripts. Let UP = SPRP
be the permuted SR decomposition of U . Then

HPSP = HP (UPR
−1
P) = (UPR

−1
P)(RPBPR

−1
P) + u(bTR−1

P) = SP ḂP + uḃT

is an equivalent decomposition, in which the matrix SP is JP -orthogonal. Next let

u̇ = γ−1(u− SP a)

be a vector of norm one such that u̇ is JP -orthogonal to the span of UP , that is,
UTP JP u̇ = 0. Then the decomposition

HPSP = SP (ḂP + aḃT) + u̇(γḃT) = SP B̈P + u̇b̈T

is an equivalent JP -orthogonal Hamiltonian Krylov-Schur-type decomposition. Fi-
nally, let ṠP be a JP -orthogonal matrix such that b̈T ṠP = ||b||2eT2k and Ṡ−1

P B̈P ṠP =

H̃P is in permuted Hamiltonian J-Hessenberg form (this reduction has to be per-
formed rowwise from bottom to top in order to achieve b̈T ṠP = ||b||2eT2k, see Table

2.7 for an algorithm which constructs such an Ṡ). Then the equivalent decomposition

HP S̈P = HP (SP ṠP) = (SP ṠP)(Ṡ−1
P B̈P ṠP) + u̇(b̈T ṠP) = S̈P H̃P + üeT2k

is a possibly reduced symplectic Lanczos factorization.
√

This theorem describes in a constructive way how to pass from a Hamiltonian
Krylov-Schur-type sequence to a symplectic Lanczos sequence.

131

Now let us assume that we have constructed a symplectic Lanczos factorization
of order 2(k + p) = 2m of the form (8.3)

HPS
2n,2m
P = S2n,2m

P H̃2m,2m
P + ζm+1vm+1e

T
2m. (8.31)

Applying the SR algorithm 5.3 to H̃2m,2m and solving all 2×2 and 4×4 subproblems
as discussed in Section 6 yields a symplectic matrix S̆ such that

S̆−1H̃2m,2mS̆ =

[
Ã G̃

Q̃ −ÃT

]
= H̆2m,2m

decouples into 1 × 1 or 2 × 2 blocks on the diagonals of each of the four subblocks
Ã, G̃ and Q̃ as explained in (6.7). Hence H̆2m,2m

P is a block diagonal matrix with 2×2

and 4× 4 blocks on the diagonal. Assume furthermore, that S̆P has been constructed
such that the desired eigenvalues of H̃2m,2m

P have been moved to the left upper part

of H̆2m,2m
P , that is the desired eigenvalues are all moved to the H̆11 part

H̆2m,2m
P =

[
H̆11

H̆22

]
.

This can easily be achieved by JP -orthogonal permutation matrices of the form

[
0 I
I 0

]

as
[

0 I2
I1 0

] [
B1 0
0 B2

] [
0 I1
I2 0

]
=

[
B2 0
0 B1

]

interchanges the diagonal blocks B1 and B2. Here the size of the identity matrices
I1, I2 is the same as that of B1 and B2.

Then postmultiplying (8.31) by S̆P

HPS
2n,2m
P S̆P = S2n,2m

P S̆P S̆
−1
P H̃2m,2m

P S̆P + ζm+1vm+1e
T
2mS̆P

yields a JP -orthogonal Hamiltonian Krylov-Schur-type decomposition

HP S̆
2n,2m
P = S̆2n,2m

P H̆2m,2m
P + ζm+1vm+1s

T
2m

similar to the symplectic Lanczos factorization (8.31). Due to the special form of
H̆2m,2m
P , the Hamiltonian Krylov-Schur-type decomposition can be partitioned in the

form

HP [S̆2n,2ℓ
P S̆2n,rest

P] = [S̆2n,2ℓ
P S̆2n,rest

P]

[
H̆11

H̆22

]
+ ζm+1vm+1[s̆

T
2ℓ s̆

T
rest]

if H̆11 ∈ R2ℓ,2ℓ. Then

HP S̆
2n,2ℓ
P = S̆2n,2ℓ

P H̆11 + ζm+1vm+1s̆
T
2ℓ (8.32)

is also a Hamiltonian Krylov-Schur-type decomposition. In other words, a Hamilto-
nian Krylov-Schur-type decomposition splits at any point where its Rayleigh quotient

132

is block diagonal. Theorem 8.8 says that there is an equivalent symplectic Lanczos
factorization

HP Š
2n,2ℓ
P = Š2n,2ℓ

P Ȟ2ℓ,2ℓ
P + v̌2ℓ+1e

T
2ℓ

where Ȟ2ℓ,2ℓ
P is in permuted Hamiltonian J-Hessenberg form and the columns of

Š2n,2ℓ
P are JP -orthogonal. Thus, the purging problem can be solved by applying the

permuted SR algorithm to H̃2k,2k
P , moving the unwanted Ritz values into the H̆22,

truncating the decomposition and returning to a symplectic Lanczos factorization.
The restarting algorithm then is to expand this symplectic Lanczos factorization,

compute the Hamiltonian Krylov-Schur-type decomposition, move the desired eigen-
values to the beginning, throw away the rest of the decomposition and transform the
decomposition back to a symplectic Lanczos one. The symplectic Lanczos factoriza-
tion achieved in this way is equivalent to the one the implicitly restarted symplectic
Lanczos algorithm would achieve if the same Ritz values are discarded in both (and
those Ritz values are distinct from the other Ritz values). The proof follows the lines
of the proof of Theorem 3.1 in [130] or Theorem 2.4 of Chapter 5 in [131].

As the iteration progresses, the Ritz estimates will converge at different rates.
When a Ritz estimate is small enough, the corresponding Ritz value is said to have
converged. The converged Ritz value may be wanted or unwanted. Unwanted ones
can be deflated from the current factorization using the above procedure. Wanted
ones should be deflated in the following sense to speed up convergence.

Assume that we have achieved a Hamiltonian Krylov-Schur-type decomposition
(8.32)

HP [S̆1
P S̆2

P] = [S̆1
P S̆2

P]

[
H̆1

H̆2

]
+ v̆m+1[0 s

T
2] (8.33)

where H̆2 ∈ R2j×2j , S̆2
P ∈ R2n,2j , s2 ∈ R2j . That is, we have HP S̆

1
P = S1

P H̆1, so that

S̆1
P spans an eigenspace of HP . We say a Hamiltonian Krylov-Schur-type decomposi-

tion has been deflated if it can be partitioned in this form. After deflation, equating
the last 2j columns of (8.33) results in

HP S̆
2
P = S̆2

P H̆2 + v̆m+1s
T
2 .

As Stewart [131, 130] points out, there are two advantages to deflating converged
eigenspaces. First, by freezing it at the beginning of the Hamiltonian Krylov-Schur-
type decomposition, we insure that the remaining space of the decomposition remains
JP -orthogonal to it. In particular, this gives algorithms the opportunity to compute
more than one independent eigenvector corresponding to a multiple eigenvalue.

The second advantage of the deflated decomposition is that we can save operations
in the contraction phase of the Krylov-Schur-type cycle. Only the rightmost part
of the Hamiltonian Krylov-Schur-type decomposition will be transformed back to a
symplectic Lanczos factorization

HP [S̆1
P Ṡ2

P] = [S̆1
P Ṡ2

P]

[
H̆1

Ḣ2

]
+ v̇m+1e

T
2ℓ.

The expansion phase does not change, and we end up with a decomposition of the
form

HP [S̆1
P Ṡ2

P Ṡ3
P] = [S̆1

P Ṡ2
P Ṡ3

P]



H̆1

Ḣ2 Ḣ23

Ḣ32 Ḣ33


 + v̆m+1e

T
2ℓ.

133

Since H̆1 is uncoupled from the rest of the Rayleigh quotient, we can apply all sub-
sequent transformations exclusively to the eastern part of the Rayleigh quotient and
to [Ṡ2

P Ṡ3
P]. If the order of H̆1 is small, the savings will be marginal; but as its size

increases during the course of the algorithm, the savings become significant.

While the implicitly restarted symplectic Lanczos factorization (8.22) can restart
with an arbitrary filter polynomial, the Krylov-Schur-type method discussed here
cannot do that. When it comes to exact shifts the Krylov-Schur-type method is to
be preferred because exchanging eigenvalues in a Schur-type form is a more reliable
process than using implicit SR steps to deflate.

8.6. Stability Issues. There are different source of instability in the (implicitly
restarted) symplectic Lanczos process: the use of the potentially unstable SR algo-
rithm, Lanczos vectors with norm not equal to one and the loss of J-orthogonality
between the symplectic Lanczos vectors. In the following, we will briefly address these
issues.

It is well known that for general Lanczos–like methods the stability of the overall
process is improved when the norm of the Lanczos vectors is chosen to be equal to 1
[112, 133]. Thus, Freund and Mehrmann propose in [64] to modify the prerequisite
STP JPSP = JP of the symplectic Lanczos method to

STP JPSP = diag(

[
0 σ1

−σ1 0

]
,

[
0 σ2

−σ2 0

]
, . . . ,

[
0 σn
−σn 0

]
) =: Σ

and

||vj ||2 = ||wj ||2 = 1, j = 1, . . . , n.

For the resulting algorithm and a discussion of it we refer to [64]. It is easy to see

that H̃P = S−1
P HPSP is no longer a permuted Hamiltonian J–Hessenberg matrix, as

S is only ’almost’ symplectic, but

ΣH̃P = (ΣH̃P)T .

Thus H̃ = PT H̃PP still has the desired form of a Hamiltonian J–Hessenberg matrix
but the upper right n × n block is no longer symmetric. Therefore H̃ is diagonally
similar to a Hamiltonian J–Hessenberg matrix.

Unfortunately an SR step does not preserve this structure and thus this modified
version of the symplectic Lanczos method cannot be used in connection with our
restart approaches.

One important property for a stable implicitly restarted Lanczos method is that
the Lanczos vectors stay bounded after possibly many implicit restarts. Neither for the
symplectic Lanczos method nor for the symplectic SR algorithm it can be proved that
the symplectic transformation matrix stays bounded. Hence the symplectic Lanczos
vectors S2n,2k

P computed via an implicitly restarted symplectic Lanczos method may
not stay bounded; this has to be monitored during the iteration. During the SR step
on the 2k×2k symplectic butterfly matrix, all but k−1 transformations are orthogonal.
These are known to be numerically stable. For the k − 1 nonorthogonal symplectic
transformations that have to be used, we choose among all possible transformations
the ones with optimal (smallest possible) condition number (see [38]).

134

8.6.1. Re-J-Orthogonalization. In theory, the above recurrences for vm and
wm are sufficient to guarantee the J–orthogonality of theses vectors. Yet, in practice,
the J–orthogonality will be lost, and some form of reorthogonalization any Lanczos
algorithm is numerically unstable. Hence we re–J–orthogonalize each Lanczos vector
as soon as it is computed against the previous ones via

wm = wm + S2n,2m−2
P J

2(m−1),2(m−1)
P S2n,2m−2

P

T
J2n,2n
P wm,

vm+1 = vm+1 + S2n,2m
P J2m,2m

P S2n,2m
P

T
J2n,2n
P vm+1.

A different way to write this re–JP–orthogonalization is

wm ← wm +
m−1∑

j=1

(< vj , wm >JP
wj− < wj , wm >JP

vj) ,

vm+1 ← vm+1 +
m∑

j=1

(< vj , vm+1 >JP
wj− < wj , vm+1 >JP

vj) ,

where for x, y ∈ R2n, < x, y >JP
:= xTJ2n,2n

P y defines the indefinite inner product

implied by J2n,2n
P .

This re–J–orthogonalization is costly, it requires 16n(m− 1) flops for the vector
wm and 16nm flops for vm+1. Thus, if 2k Lanczos vectors v1, w1, . . . , vk, wk are
computed, the re–J–orthogonalization adds 16n(k+1)k−32n flops to the overall cost
of the symplectic Lanczos method.

For standard Lanczos algorithms, different reorthogonalization techniques have
been studied (for references see, e.g., [65]). Those ideas can be used to design analo-
gous re–J–orthogonalizations for the symplectic Lanczos method.

8.7. Implicit versus Explicit Restarts. Implicit restarts have some advan-
tages over explicit restarts as will be discussed in this section. First of all, implicit
restarts are more economical to implement. Assume we have to employ a restart after
k steps of the symplectic Lanczos method. An implicit single shift restart requires

28n · k + 16n+ (100k − 65) flops for the implicit SR step
and 38n+ 4nz flops for one additional Lanczos step
and 32n · k − 16n flops for re–J–orthogonalization.

That is a total of 4nz + 60n · k + 38n+ 100k− 65 flops.
An explicit restart requires

4nz · k + 32n · k + 6n flops for k Lanczos steps
and 16n · (k + 1)k − 32n flops for re–J–orthogonalization.

This sums up to 4nz · k + 16n · k2 + 48n · k − 26n flops. If an explicit restart with
the starting vector v̆1 = (HP − µI)v1 would be performed, this would add another
8n2 + 2n to this flop count.

From these numbers we can conclude that performing an implicit restart is sig-
nificantly cheaper than explicitly restarting the Lanczos iteration. This is due to the
fact that an implicit SR step is usually cheaper than k Lanczos steps. Besides we
have to re–J–orthogonalize only once while an explicit restart would require a re–J–
orthogonalization in each iteration step. For more economical re–J–orthogonalization
techniques implicit restarts are also advantageous. For double–shifted or multishifted

135

restarts the implicit technique is still favorable although the difference in the flop
count becomes smaller.

Performing an explicit restart with (HP − µI)v1 or (HP − µI)(HP + µI)v1 or
(HP − µI)(HP +µI)(HP −µI)(HP +µI) as the new starting vector, one is forced to
directly multiply the old starting vector by matrices of the form (HP −xI). This can
be avoided by the implicit method.

Note that the starting vector v1 can be expressed as a linear combination of the
eigenvectors yi of HP (assuming for simplicity that HP is diagonalizable) :

v1 =
2n∑

i=1

αiyi.

Then a single shifted starting vector takes the form

v̆1 = ρ(HP − µI)v1 = ρ
2n∑

i=1

αi(λi − µ)yi

where the λi are the eigenvalues corresponding to yi. As the single shift selected will
be real, applying such a modification to v1 tends to emphasize those eigenvalues of
HP in v̆1 which correspond to eigenvalues λi with the largest positive or negative
real part (depending on whether the chosen shift is positive or negative). Thus it is
possible that the vector v̆1 will be dominated by information only from a few of the
eigenvalues with largest real part. An implicit restart directly forms S̆2k

P from a wide
range of information available in S2k

P and this should give better numerical results
than the explicit computation of v̆1.

As an example consider

H = U

[
A 0
0 −AT

]
UT

where A = diag(−106, 9, 8, 7, 6, 5, 4, 3,

[
2 1
−1 2

]
) is a block diagonal matrix and U is

the product of randomly generated symplectic Householder and Givens matrices. The
eigenvalues of H can be read off directly. The following computations were done using
Matlab. The starting vector v1 is chosen randomly. After 4 steps of the symplectic
Lanczos method the resulting 8 × 8 Hamiltonian J–Hessenberg matrix H̃8 has the
eigenvalues (computed by the Matlab function eig)

λ(H̃8) =





9.999999999999997e+ 05
−9.999999999999997e+ 05

3.040728370123861e+ 00
−3.040728370123995e+ 00

9.200627380564711e+ 00
−9.200627380564642e+ 00

9.477682371618508e+ 00
−9.477682371618551e+ 00





.

To remove an eigenvalue pair from H̃8 one can perform an implicitly double–shifted
restart described in Section 8.4. Removing the two eigenvalues of smallest absolute

136

value from H̃8, we obtain a Hamiltonian J–Hessenberg matrix H̆6
impl whose eigenval-

ues are

λ(H̆6
impl) =





9.999999999999994e+ 05
−9.999999999999994e+ 05

9.200627382497721e+ 00
−9.200627382497721e+ 00

9.477682372414739e+ 00
−9.477682372414737e+ 00





.

From (4.2) it follows that these have to be the 6 eigenvalues of H̃8 which have not
been removed. As can be seen, we loose 4 − 5 digits during the implicit restart.
Performing an explicit restart with the explicitly computed new starting vector v̆1 =
(H−µI)(H+µI)v1 yields a Hamiltonian J–Hessenberg matrix H̆6

expl with eigenvalues

λ(H̆6
expl) =





9.999999999999999e+ 05
−9.999999999999999e+ 05

9.200679454660859e+ 00
−9.200679454660861e+ 00

9.477559041923007e+ 00
−9.477559041923007e+ 00





.

This time we lost up to 10 digits. As a general observation from a wide range of
numerical tests, the explicit restart looses at least 2 digits more than the implicit
restart.

8.8. Breakdowns in the SR Factorization. So far we have assumed that the
SR decomposition always exists. Unfortunately this assumption does not always hold.
If there is a starting vector v̆1 = q(H)v1 for which the explicitly restarted symplectic
Lanczos method breaks down, then it is impossible to reduce the Hamiltonian ma-
trix H to Hamiltonian J–Hessenberg form with a transformation matrix whose first
column is v̆1. Thus, in this situation the SR decomposition of q(H) cannot exist.

As will be shown in this section, this is the only way that breakdowns in the SR
decomposition can occur. For simplicity, we will discuss the single shift SR step (that
is, a spectral function q(HP) = HP − µI), in which only two types of elementary
transformations are used. Most of them are orthogonal symplectic Givens rotations,
their computation cannot break down. The other type of transformations used are
symplectic Gaussian eliminations. These are the only possible source of breakdown.

Assuming that using the symplectic Lanczos we have achieved (8.3),

HPS
2n,2k
P = S2n,2k

P H̃2k,2k
P + ζ̃k+1vk+1e

T
2k, (8.34)

where S2n,2k
P = [v1, w1, . . . , vk, wk] and the parameters of H̃2k,2k

P are given by δ̃1, . . . , δ̃k,

β̃1, . . . , β̃k, ν̃1, . . . , ν̃k, and ζ̃2, . . . , ζ̃k. Next an implicit single shift restart is performed.
The single shift implicit SR step applies a sequence of Givens and Gauss transforma-
tions. Assume that the first j − 1 Gauss transformation exist. Then the first part of
the transformation of H̃2k,2k can be computed

GjLj · · ·G2L2G1 =: Ŝ−1

as described in Section 5.1 such that the first j − 1 columns and the columns k +
1, . . . , k + j − 1 of

Ŝ−1H̃2k,2kŜ

137

are in J-Hessenberg form. The bulge has been moved to the (j + 2, j + 1) position
(see Section 5.1). In order to use the same notation as in the rest of the discussion
on the symplectic Lanczos method, let us consider the permuted version

Ŝ−1
P H̃2k,2k

P ŜP = H̆2k,2k
P .

Moreover, as only the first j steps of the SR decomposition are performed, we have

ŜP =

[
Ŝ2j,2j
P 0
0 I

]
,

and Ŝ2j,2j
P is an upper Hessenberg matrix.

Consider the leading (2j+2)×(2j+2) principal submatrix of H̆2k,2k
P . The leading

2j×2j principal submatrix is in permuted J-Hessenberg form, while the last two rows
and columns have the following form

H̆2j+2,2j+2
P =




δ̆1 β̆1 0 ζ̆2
ν̆1 −δ̆1 0 0

0 ζ̆2
. . .

. . .

0 0
. . .

. . .

. . . δ̆j βj 0 x2

. . . νj −δ̆j 0 −x1

x1 x2 x x
0 0 x x




as ζ̃j+1e
T
2jŜ

2j,2j
P = [0, · · · , 0, x1, x2]

T because Ŝ2j,2j
P is an upper Hessenberg matrix.

The parameters βj and νj , as well as the entries of the trailing 2×2 principal subma-
trix, are not in their form yet. In the implicit SR step a Gauss transformation would
be used next to eliminate x1 against νj . The elimination will fail to exist if νj = 0;

in that case the SR decomposition of q(H̃2k,2k) does not exist.
Next, we will show that this breakdown in the SR decomposition implies a break-

down in the Lanczos process started with the starting vector v̆1 = ρq(HP)v1.

From (8.34) we obtain by multiplying from the right by ŜP

HP S̆
2n,2k
P = S̆2n,2k

P H̆2k,2k
P + ζk+1vk+1e

T
2kŜP

where S̆2n,2k
P = S2n,2k

P ŜP = [v̆1, w̆1, . . . , v̆j , w̆j , vj+1, wj+1, . . . , vk, wk]. From the deriva-
tions in the discussion of the implicit restart, we know that the starting vector of this
recursion is given by v̆1 = ρq(HP)v1. As the trailing principal submatrix of ŜP is the
identity, we can just as well consider

HP S̆
2n,2j
P = S̆2n,2j

P H̆2j,2j
P + rje

T
2j

for some rj . H̆
2j,2j
P is in Hamiltonian J-Hessenberg form. Due to the special form of

H̆2j+1,2j+2
P , the next step in the symplectic Lanczos process determines the vector w̆j

using the equation

HP v̆j = δ̆j v̆j + νjw̆j + x1vj+1. (8.35)

138

The vectors v̆j and vj+1 are known, as well as the scalars δ̆j and x1. Hence,

w̆j =
1

νj
(−HP v̆j + δ̆j v̆j + x1vj+1).

Premultiplying (8.35) by v̆Tj JP we obtain

v̆Tj JPHP v̆j = δ̆j v̆
T
j JP v̆j︸ ︷︷ ︸

=0

+νj v̆
T
j JP w̆j︸ ︷︷ ︸

=1

+x1 v̆
T
j JP vj+1︸ ︷︷ ︸

=0

= νj

as the columns of S̆2n,2k
p are JP -orthogonal. The symplectic Lanczos will break down if

νj = v̆Tj JPHP v̆j = 0, that is, an SR breakdown implies a serious Lanczos breakdown.
The opposite implication follows from the uniqueness of the SR decomposition and
of the Lanczos factorization.

Hence, we have
Theorem 8.9. Suppose the Hamiltonian J–Hessenberg matrix H̃2k corresponding

to (8.3) is unreduced and let µ ∈ R. Let GP (j, y) be the jth permuted symplectic Gauss

transformation required in the SR step on (H̃2k
P − µI). If the first j − 1 permuted

symplectic Gauss transformations of this SR step exist, then GP (j, y) fails to exist if
and only if v̆Tj JPHP v̆j = 0 with v̆j as in (8.24).

Similar theorems can be shown for the double and quadruple shift case. A similar
statement for the nonsymmetric Lanczos method and the HR decomposition has been
given in [66, Theorem 3].

9. Numerical Experiments.

9.1. Passivity preserving model reduction via a structured Lanczos
method. This section is concerned with linear time invariant (LTI) systems

Σ : ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (9.1)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, D ∈ Rp×p. In this setting, u is the input or
excitation function, x is the state, and the function f(x, u) = Ax(t)+Bu(t) determines
the dynamics of the system Σ. y is the output or set of observations and h(x, u) =
Cx(t)+Du(t) describes the way that the observations are deduces from the state and
the input. The complexity of Σ is defined as the number of states n. The problem we
will address is to approximate Σ with another dynamical system

Σ̂ : ˙̂x(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t) + D̂u(t), (9.2)

where Â ∈ Rℓ×ℓ, B̂ ∈ Rℓ×p, Ĉ ∈ Rp×ℓ, D̂ ∈ Rp×p. That is, in the new system the
number of states (the number of first order differential equations to be solved) is much
less than in the original system: ℓ≪ n. System properties of the original system such
as stability, passivity, controllability or observability should be preserved by a model
reduction procedure. Often, the existence of a global error bound is required and a
small approximation error in terms of ||y − ŷ|| for an appropriate norm is desired.

Most approaches for model reduction of LTI systems are based on the idea of
projecting the original system Σ onto a system of lower order. Usually, two real
n × ℓ matrices V and W with WTV = I are computed which define the projector
Π = VWT . The projection of the states of the original system generates a reduced-
order model:

Â = WTAV, B̂ = WTB, Ĉ = CV, D̂ = D. (9.3)

139

For a recent survey of methods for computing reduced-order models see [5, 25].
Here we will consider only stable and passive systems Σ. A system is stable,

if the matrix A is stable, that is, if all eigenvalues of A lie in the open left half
plane. A system is passive if it does not generate any energy internally, and strictly
passive, if it consumes or dissipates input energy. A classical result [144] says that
a passive system is positive real. For the LTI systems considered here this implies
that the corresponding transfer function G(s) = D + C(sI − A)−1B is positive real,
that is, G(s) is analytic and G(s) + (G(s))H ≥ 0 for Re(s) > 0 (see, e.g., [10] and the
references therein). When reducing a stable and passive system, it is important to
produce a reduced-order model that preserves the important system properties and
response characteristics such as stability and passivity while at the same time using
a computationally efficient method.

Passive system arise in a variety of control problems for mechanical, mechatronic
and micro-electro-mechanical systems, see [78]. Circuit simulation is another impor-
tant source of model reduction problems. In some of these applications, e.g., in the
simulation of RLC circuits, the system Σ is stable and passive. A number of methods
previously proposed for solving the problem considered here is based on the moment
matching property of Krylov subspace methods. For a recent survey of such methods
see [62].

Based on recent work by Antoulas [6] characterizing passivity through interpo-
lation conditions, Sorensen derives in [128] a novel projection method that preserves
both stability and passivity. Given 2ℓ distinct points s1, . . . , s2ℓ, let Tj = sjI −A and

Ṽ = [T−1
1 B . . . T−1

ℓ B], (9.4)

W̃ = [T−T
k+1C

T . . . T−T
2ℓ CT]. (9.5)

Assuming that det W̃T Ṽ 6= 0, the projected system defined by (9.3) where V = Ṽ

and W = W̃ (Ṽ T W̃)−1, interpolates the transfer function of Σ at the points si (see
[6, Proposition 4.1]):

Ĝ(si) = G(si), i = 1, 2, . . . , 2ℓ.

Antoulas proves in [6], that if the interpolation points sj in (9.4), (9.5) are chosen

as spectral zeros of the original passive system Σ, the reduced system Σ̂ defined by
(9.3) is both stable and passive. Note that in order to end up with real reduced

matrices Â, B̂, Ĉ, whenever a complex spectral zero is selected, its complex conjugate
has to be selected as well. The matrices Ṽ , W̃ can be obtained without the explicit
computation of spectral zeros. As Sorensen [128] noted, this can be achieved through
the computation of certain invariant subspaces of a generalized eigenvalue problem.
In the following, we will briefly review the results by Antoulas [6] and Sorensen [128]
and state the passivity preserving model reduction method proposed by Sorensen. We
show how the approach can be rewritten such that as a structured eigenvalue problem
results and describe an efficient, structure-preserving Krylov subspace method for
its solution. Finally, a numerical example comparing Sorensen’s method with the
structure-preserving one proposed here is reported.

9.1.1. Sorensen’s passivity preserving model reduction method. Let us
consider the LTI system (9.1) where it is assumed that

1. A is stable,
2. Σ is observable and controllable,

140

3. D+ = D +DT is symmetric positive definite,
4. Σ is passive.

Recall, that a real rational function G(s) is positive real if G(s) is analytic and G(s)+
GT (−s) ≥ 0 for Re(s) > 0. The last property implies here the existence of a stable
rational matrix function W (s) such that G(s)+GT (−s) = W (s)WT (−s). This is the
spectral factorization of G, W is called a spectral factor of G and the zeros of W ,
i.e., λi, i = 1, . . . , n, such that detW (λi) = 0, are called the spectral zeros of G; these
definitions and relations can be found in many papers and texts, see e.g. [146, 10].
Denote the set of all spectral zeros by SG

SG := {λ| det W (λ) = 0} = {spectral zeros of G}.

Suppose a reduced-order model Σ̂ (9.2) has been obtained and let Ĝ(s) = D̂ +

Ĉ(sI−Â)−1B̂ be the associated transfer function. Antoulas notes in [6] that a passive

reduced-order model Σ̂ will result if certain of the spectral zeros are preserved in the
reduced-order model.
Proposition: If S bG ⊂ SG, Ĝ(λ) = G(λ) for all λ ∈ S bG, and Ĝ is a minimal degree

rational interpolant of the values of G on the set S bG, then Σ̂ is both stable and passive.

The set SG of all spectral zeros is equal to the set of (finite) eigenvalues of

A− λE =



A B
−AT −CT

C BT D+


− λ



I

I
0


 , (9.6)

that is SG = σ(A, E)\{∞} where

σ(A, E) = {λ ∈ C| det(A− λE) = 0}.

Making use of this observation, Sorensen suggests in [128] to compute the reduced-
order model through the construction of a basis for a selected invariant subspace of
the pair (A, E). That is, he suggests to compute a partial real generalized Schur
decomposition of (A, E) such that

UTAQ = S

is an upper quasi-triangular matrix in Rℓ×ℓ and

UTEQ = T

is an upper triangular matrix in Rℓ×ℓ and all eigenvalues of (S, T) have positive real
part. The matrices U and Q in R(2n+p)×ℓ have orthonormal columns. Then T is
nonsingular and we have from AQ = US, EQ = UT that EQT−1 = U and

AQ = EQT−1S =: EQR

where Q has orthononormal columns (QTQ = I) and R is real quasi-upper triangular
in R

ℓ×ℓ such that Re(λ) > 0 for all eigenvalues λ of R.
Let QT = [XT , Y T , ZT] be partitioned in accordance with the block structure of

A; X ∈ Rn×ℓ, Y ∈ Rn×ℓ, Z ∈ Rp×ℓ. Then


A B
−AT −CT

C BT D+






X
Y
Z


 =



X
Y
0


R. (9.7)

141

The desired projection matrices V and W can be computed from X and Y in the
following way: Compute the singular value decomposition [65] of

XTY = QxS
2QTy ,

where Qx and Qy are orthogonal matrices in Rℓ×ℓ and S2 ∈ Rℓ×ℓ is a diagonal matrix
with nonnegative diagonal entries. Set

V = XQxS
−1, W = Y QyS

−1,

and

Â = WTAV, B̂ = WTB, Ĉ = CV, D̂ = D.

The resulting reduced system is stable and passive [128].
For small to medium size dense problems A and E can be actually formed and

the desired generalized Schur decomposition can be obtained from the full one. For
large sparse systems this would be impractical and inefficient. An iterative method
computing a desired set of eigenvalues and associated eigenvectors (or an associated
invariant subspace) is more appropriate. As the best currently available method for
this purpose, the implicitly restarted Arnoldi (IRA) algorithm [126] as implemented
in Matlab’s eigs or ARPACK in Fortran [90] can not deal with the problem under
consideration here (as E is not positive definite), Sorensen suggests applying a Cayley
transformation Cµ = (µE − A)−1(µE + A) where µ ≥ 0 is a real shift. With a
proper choice of µ this will provide for rapid convergence to an invariant subspace
corresponding to the ℓ transformed eigenvalues of largest magnitude of

(µE − A)−1(µE +A)Q = QR̂ (9.8)

so that

AQ = EQR where R := µ(R̂ − I)(R̂+ I)−1. (9.9)

An implementation will require two sparse direct factorizations of A − µI and A +
µI. The Cayley transformation may then be applied to an arbitrary vector using a
blocked matrix-vector product followed by a Gaussian block elimination. Moreover, it
should be noted that as the partial real Schur decomposition will automatically keep
complex conjugate pairs of eigenvalues together, the parameter ℓ that specifies the
order of the reduced system will perhaps need to be adjusted by 1 to accommodate
this. The algorithm as posed is appropriate for real matrices, and in particular,
all arithmetic stays real throughout. Please note the use of Matlab’s ’eig’ will
introduce complex arithmetic as eigenvectors and not invariant subspaces will be
computed. This complex data has to be transformed to equivalent real one in order
to be used in the above process.

9.1.2. Hamiltonian eigenproblem. It is easily seen that λ ∈ SG implies −λ ∈
SG since from Au = λEu we have ũTA = −λũTE , where uT = [xT , yT , zT] and
ũT = [yT ,−xT , zT]. As Hamiltonian matrices display such an eigenvalue pairing, in
this section we will show how to transform the generalized eigenvalue problem A−λE
associated with the generalized Schur decomposition (9.7) into a standard eigenvalue
problem for a Hamiltonian matrix.

142

Fig. 9.1. one section of the circuit as in [67]

From (9.7) we obtain [5]

AX +BZ = XR (9.10)

−ATY − CTZ = Y R (9.11)

CX +BTY +D+Z = 0 (9.12)

From (9.12) it follows that Z = −D−1
+ {CX +BTY }, as D+ = D +DT is symmetric

positive definite (assumption 3 in Section 9.1.1). Substituting this expression for Z
into (9.10), (9.11) yields

[
A−BD−1

+ C −BD−1
+ BT

CTD−1
+ C −(A− CD−1

+ B)T

]

︸ ︷︷ ︸
H

[
X
Y

]
=

[
X
Y

]
R.

H can be represented as

H =

[
Ã G̃

Q̃ −ÃT

]
(9.13)

with G̃ = G̃T and Q̃ = Q̃T . Obviously, H is a Hamiltonian matrix and its eigenvalues
are eigenvalues of the pair (A, E). Hence, instead of considering the partial generalized
Schur decomposition

AQ = EQR

we can consider the partial Schur decomposition of the Hamiltonian matrix H

HS = SΛ, (9.14)

where S ∈ R2n×ℓ and Λ ∈ Rℓ×ℓ.
Using the symplectic Lanczos algorithm for solving this eigenproblem, we not only

save about half of the computational effort compared to the standard approach; this
approach offers a fast, efficient and more reliable computation of the reduced-order
model. Unfortunately, as for all model reduction methods based on Krylov subspace
methods, there does not exist a global error bound.

9.1.3. Numerical Experiment. For the preliminary numerical experiment pre-
sented in this section, we consider the RLC ladder network of [67]. This circuit consists
of 200 sections interconnected in cascade; each section is as shown in Fig. 9.1. The

143

0 50 100 150 200
10

−40

10
−30

10
−20

10
−10

10
0

10
10

Order

lo
g

Fig. 9.2. Hankel singular values

input is the voltage V applied to the first section; the output is the current I of the
first section. The order of the overall system is n = 400. The state variable x2i−1

is the voltage across capacitor Ci, for i = 1, 2, . . . , n+1
2 , while the state variable x2i

is the current through the inductor Li for i = 1, 2, . . . , n−1
2 . It is assumed that all

the capacitors, inductors and resistors have the value 0.1, except R = 1. The Hankel
singular vales of this system decay rapidly (see Figure 9.2) so that one can expect a
good approximation of the original system by a reduced-order one.

We compare the two approaches described before. For the first approach the
matrix pencil A − λE (9.6) is set up. A shift µ is chosen (here µ = 5), the Cayley
transformation (9.8) is computed (actually, not the matrix itself, but an operator that
applies this matrix to a vector is set up) and Matlab’s ’eigs’ is used to compute a
ℓ × ℓ matrix R and the associated matrix Q as in (9.9). Our implementation makes
sure that the computed Q is turned into a real matrix which spans the same subspace
os Q. From this the reduced-order system is computed as described in Section 9.1.1.
This approach will be referred to in the sequel as the Cayley approach.

The invariant subspace computed determines the choice of the spectral zeros to
be interpolated. Fig. 9.3 displays the spectral zeros of the transfer function of the
original system in the right half plane (please note that an identical set of spectral
zeros can be found in the left half plane) and the spectral zeros chosen by the Cayley
approach when ℓ = 10 is chosen.

The second approach works with the Hamiltonian matrix H (9.13). A desired
set of eigenvalues and appropriate invariant subspaces (9.14) are computed via the
structure-preserving symplectic Lanczos algorithm and the reduced system is com-
puted as described in Section 9.1.2. In order to achieve fast convergence the use of
a shift is recommended, our implementation uses the shift-and-invert technique dis-
cussed in Section 8.3 with a complex shift. Using the shift 5.4 + 0.75i, this approach
yields the same spectral zeros and the same subspace as the Cayley approach, if a
10-dimensional subspace is sought. While ’eigs’ needed 22 iterations for conver-
gence, the implicitly restarted symplectic Lanczos method converges after 1 iteration.
Using the obtained subspace to compute a reduced order system, we obtain a reduced
system which matches the original system quite well, see the Bode plots in Figure 9.4
and Figure 9.5.

144

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20
Spectral Zeros in the right half plane and Interpolation Points

Real Part

Im
a

g
in

a
ry

 P
a

rt

interpolation points
spectral zeros

Fig. 9.3. Spectral zeros and interpolation points

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−10

−5

0

5

10

15

20

25

M
ag

ni
tu

de
 (d

B)

Bode Diagram −− Cayley/Hamiltonian approach

Frequency (rad/sec)

original system

reduced system

Fig. 9.4. Bode plot comparing the original system and the reduced-order systems

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−35

−30

−25

−20

−15

−10

−5

0

M
ag

ni
tu

de
 (d

B)

Bode Diagram error −− Cayley/Hamiltonian approach

Frequency (rad/sec)

Fig. 9.5. Bode plot for the error systems

145

10
−2

10
0

10
2

10
4

0

2

4

6

8

10

12

14

16

18

20

Frequency ω

G
+G

T

G+GT on imaginary axis

Original
Reduced

Fig. 9.6. G(iω) + G(−iω) on the imaginary axis

The main computational effort for both approaches consists in the set up of the
shifted operator and its application to a vector. For the implicitly restarted symplectic
Lanczos method, the effort for setting up H4

H4 = H(H−σI)−1(H+σI)−1(H−σI)−1(H+σI)−1 = (H3−(σ2+σ2)H+|σ|4H−1)−1

and its application to a vector has been considered in Section 8.3: Once the LU
decompositions A− τI and A+ τI are available, the operator H4 can be set up. This
requires

• 16 triangular solves and
• 4 scalar products.

The application of the operator H4 to a vector now requires
• 16 triangular solves,
• 1 matrix-vector product with A and 1 matrix-vector product with AT ,
• 16 scalar products and
• 16 saxpy operations.

For the implicitly restarted symplectic Lanczos method, the effort for setting up the
Cayley approach operator

(µE − A)−1(µE +A)

and its application to a vector is as follows: Once the LU decompositions A − τI
and A + τI are available, the operator can be set up. This requires no additional
operations. The application of the operator to a vector requires

• 8 triangular solves,
• 4 scalar products and
• 4 saxpy operations.

As in each of the 22 iteration steps of ’eigs’, the operator has to be applied to a
vector, this is clearly much more expensive then just 1 iteration step of the implicitly
restarted symplectic Lanczos process, even if the overhead for setting up H4 is taken
into account.

The reduced system is stable and passive. The passivity can be observed in Figure
9.6, as the evaluation of G(iω)+G(−iω) on the imaginary axis is always positive here.

While the Cayley approach allows only for real shift, the approach via the Hamil-
tonian eigenproblem allows to use complex shifts. For the shift 5+6i, the interpolation
points were chosen as depicted in Figure 9.7.

146

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20
Spectral Zeros in the right half plane and Interpolation Points

Real Part

Im
a

g
in

a
ry

 P
a

rt

interpolation points
spectral zeros

Fig. 9.7. Spectral zeros and interpolation points

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−10

−5

0

5

10

15

20

M
ag

ni
tu

de
 (d

B)

Bode Diagram −− Hamiltonian approach

Frequency (rad/sec)

original system

reduced system

Fig. 9.8. Bode plot comparing the original system and the reduced-order systems

This results in a reduced system which approximates the original system much
better than the one before, see the Bode plots in Figure 9.8 and Figure 9.9.

As before, the reduced system is stable and passive. The passivity can be observed
in Figure 9.10, as the evaluation of G(iω) +G(−iω) on the imaginary axis is always
positive here.

These results are very limited. The motivation of this section was to demonstrate
the possible application of the implicitly restarted symplectic Lanczos method in the
context of passivity preserving model reduction. There are still a number of open
problems for the passivity preserving model reduction problem which have not been
addressed here. It is not clear how to choose the interpolation points and whether it
is possible to derive a bound on the error of the reduced model.

9.2. Large-scale quadratic eigenvalue problems wth Hamiltonian eigen-
structure. This section is concerned with the solution of the quadratic eigenvalue

147

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−80

−70

−60

−50

−40

−30

−20

−10

M
ag

ni
tu

de
 (d

B)

Bode Diagram error −− Hamiltonian approach

Frequency (rad/sec)

Fig. 9.9. Bode plot for the error systems

10
−2

10
0

10
2

10
4

0

2

4

6

8

10

12

14

16

18

20

Frequency ω

G
+G

T

G+GT on imaginary axis

Original
Reduced

Fig. 9.10. Pos Real

problem (QEP)

(λ2M + λG+K)x = 0, M = MT , G = −GT , K = KT , (9.15)

where M,G,K ∈ R
n×n are large and sparse. The task is to compute λ ∈ C and

x ∈ Cn\{0} such that (9.15) holds. Such eigenvalue problems arise, for example, from
finite element discretizations for analyzing the elastic deformation of anisotropic ma-
terials or computing corner singularities, see, e.g., [7, 113] and the references therein.
In these applications M and −K are positive definite mass and stiffness matrices, re-
spectively. Gyroscopic systems are another source of quadratic eigenproblems (9.15).
Here, M and K are positive definite mass and stiffness matrices and G is the gyro-
scopic matrix resulting from the Coriolis force. Such systems arise when modeling
vibrations of spinning structures such as the simulation of tire noise, helicopter ro-
tor blades, or spin-stabilized satellites with appended solar panels or antennas; see
[54, 79, 135] and references therein. In the simulation of vibro-acoustics in flexible
piping systems the coupling of the linear wave equation without internal flow and the
structural Lamé-Navier equations at fluid-structure interfaces also leads to a quadratic
eigenvalue problem with Hamiltonian symmetry [96]. A summary of conditions un-
der which quadratic operator eigenvalue problems have a spectrum with Hamiltonian
symmetry is given in [114].

148

Depending on the application, different parts of the spectrum are of interest. Typ-
ically, one is interested in the eigenvalues with smallest real part or the eigenvalues
smallest or largest in modulus. The usual approach is to first linearize the quadratic
eigenproblem to a generalized eigenproblem, transform this into a standard eigenprob-
lem and solve that one using a (shift-and-invert) Krylov subspace method. There are
also different approaches such as the SOAR (second-order Arnoldi) algorithm [9], a
Krylov subspace based method for the solution of the quadratic eigenvalue problem,
or the Jacobi-Davidson algorithm applied to polynomial eigenvalue problems [125].
Both approaches can be applied to the quadratic eigenproblem directly without any
linearization.

Here we will be concerned with algorithms for solving the quadratic eigenvalue
problem which preserve and exploit its Hamiltonian eigenstructure. For this, we will
make use of the linearization discussed in Section 8.3 which leads to the Hamiltonian
matrix H (8.19)

H =

[
I − 1

2G
0 I

] [
0 −K

M−1 0

] [
I − 1

2G
0 I

]
.

Typical applications require a few eigenvalues that are largest or smallest in mag-
nitude or closest to the imaginary axis. Computing the ones largest in magnitude,
can be achieved efficiently by Krylov subspace methods, e.g., Arnoldi or Lanczos pro-
cesses, possibly combined with implicit restarting or a Krylov-Schur-type technique
[131]. To compute other eigenvalues, first transformations must be applied to the
matrix H which have the effect of shifting the desired eigenvalues to the periphery of
the spectrum. In light of the symmetry of the spectrum, one might think of working
with (H − τI)−1(H + τI)−1, in case τ is real or purely imaginary. All eigenvalues
near to ±τ are mapped simultaneously to values of large modulus. But this ma-
trix is not Hamiltonian but skew-Hamiltonian. The standard (implicitly restarted)
Arnoldi method automatically preserves this structure. This led to the development
of the SHIRA method as a structure-preserving (shift-and-invert) Arnoldi method for
Hamiltonian matrices [101].

Here we discuss an alternative, the restarted symplectic Lanczos algorithm, the
Hamiltonian Krylov-Schur-type method as discussed in Section 8.5. In order to stay
within the Hamiltonian structure, for a real shift τ , we can work with the Hamiltonian
matrix

H1(τ) = H−1(H − τI)−1(H + τI)−1 = (H3 − τ2H)−1, (9.16)

or

H2(τ) = H(H − τI)−1(H + τI)−1 = (H − τ2H−1)−1, (9.17)

for example. In case a complex shift τ is used, we can work with the Hamiltonian
matrix

H3(τ) = H−1(H − τI)−1(H + τI)−1(H − τI)−1(H + τI)−1

= (H5 − (τ2 + τ2)H3 + |τ |4H)−1 (9.18)

or

H4(τ) = H(H − τI)−1(H + τI)−1(H − τI)−1(H + τI)−1

= (H3 − (τ2 + τ2)H + |τ |4H−1)−1. (9.19)

149

The shift-and-invert operators H1(τ), H2(τ), H3(τ) have first been considered in [113,
139] while H4(τ) is examined in [20].

When largest or smallest modulus eigenvalues are required, the Hamiltonian
Krylov-Schur-type algorithm is applied to H as in (8.19) or

H−1 =

[
I 1

2G
0 I

] [
0 −K−1

M 0

] [
I 1

2G
0 I

]
. (9.20)

As SHIRA requires a skew-Hamiltonian operator, H2 or H−2 have to be used in
these situations so that the Hamiltonian Krylov-Schur-type approach is more efficient
in these cases.

When other eigenvalues are required, H2 or H4 will be used. In this situation
SHIRA will work with a similar, so skew-Hamiltonian operator. The cost for applying
the operators is the same, so that in this respect, none of the algorithms is to be
preferred.

An advantage of the Hamiltonian Krylov-Schur-type method is that the lower half
of the computed eigenvectors of H and H−1 yields the corresponding eigenvector of
the quadratic matrix polynomialQ(λ) while the eigenvectors computed by SHIRA can
not be used to deduce eigenvectors of Q(λ); see [7, 101, 113] for more details on this.
In any case, no matter how approximate eigenvalues λ̃ are computed, eigenvectors
can also be obtained by applying the inverse iteration

Q(λ̃)xk = xk−1, xk =
1

‖xk‖
xk, k = 1, 2, . . . , (9.21)

where x0 of unit norm is chosen arbitrarily, see [113, 132].

9.2.1. Numerical results. In this section, we report the results of numerical
experiments obtained with the Krylov-Schur-type method for Hamiltonian eigenprob-
lems applied to the QEP (8.18). All experiments are performed in Matlab R2006a
using double precision on a Pentium M notebook with 512 MB main memory or a HP
compute server with 2 Xeon 3,06 GHz processors, 533 MHz 512-KB level 2 cache, 1
MB level 3 cache, 9 GB main memory (of which only 2 GB can be used due to Mat-
lab’s limitations in addressing more than 2 GB of memory in the available 32-Bit
version of Matlab).

The accuracy of computed eigenvalues and eigenvectors is compared using relative
residuals

‖Q(λ̃)x̃‖1
‖Q(λ̃)‖1‖x̃‖1

,

where (λ̃, x̃) is a computed Ritz pair.

Computing corner singularities. The solutions of elliptic boundary value
problems like the Laplace and linear elasticity (Lamé) equations in domains with
polyhedral corners often exhibit singularities in the neighborhood of the corners. The
singularities can be quantified if this neighborhood is intersected with the unit ball
centered at the corner and parameterized with spherical coordinates (r, φ, θ). Then
the singular part of the solution can be expanded in a series with terms of the form
rαu(φ, θ), where α is the singular exponent. It turns out that α = λ − 1

2 and u can
be computed as eigenpairs of quadratic operator eigenvalue problems of the form

λ2m(u, v) + λg(u, v) = k(u, v), (9.22)

150

SHIRA
3 iterations

Eigenvalue Residual
−0.90592878886122 6.945 · 10−17

−0.90634686034999 1.325 · 10−16

−1.07560224930036 3.933 · 10−17

−1.60332758477172 1.639 · 10−15

−1.65786577098970 6.311 · 10−16

−1.66121735256372 2.157 · 10−16

Table 9.1
Fichera corner (n = 5139): SHIRA with shift τ = 1, 12 eigenvalues requested.

where m(., .), k(., .) are Hermitian positive definite sesquilinear forms and g(., .) is
a skew-Hermitian sesquilinear form. Finite-element discretization of the operator
eigenvalue problem (9.22) leads to a QEP as in (8.18), where M and −K are positive
definite. For the numerical solution of (9.22), the software package CoCoS4 [113]
can be used. Note that CoCoS includes Fortran implementations of SHIRA as well
as a solver based on applying the implicitly restarted Hamiltonian Lanczos process
[17, 139] to H−1 from (9.20). Here we use CoCoS only for the assembly of the matrices
M,G,K.

In the following example we consider brittle elastic bodies where the environment
of crack peaks is sufficiently well approximated by the linear material law (Lamé
equation). A more detailed discussion can be found in [116]. The 3D elasticity
problem is considered for the Fichera corner which results from cutting the cube
[0, 1] × [0, 1] × [0, 1] out of the cube (−1, 1) × (−1, 1) × (−1, 1). The problem is
defined by the Lamé constants µ, ν derived from Young’s modulus of elasticity, and
the opening angle ξ of the corner. In the following computations for the Fichera
corner, Lamé’s constants are µ = 0.5 and ν = 0.3 and the opening angle is 90◦. We
compare the Hamiltonian Krylov-Schur-type algorithm, a Matlab implementation
of SHIRA and the Matlab function eigs.

For the first test an example of size n = 5139 is chosen. All algorithms use the
same starting vector. We chose the shift τ = 1 and set up an operator to apply H2(τ)
to a vector. In order to compare the three algorithms considered here, the Hamiltonian
Krylov-Schur-type algorithm and Matlab’s eigs are applied to H2(1), while SHIRA
is used with the skew-Hamiltonian operator R2(1) as in (8.20). We asked for 12
eigenvalues and allowed a search space of size 24. The results are shown in Tables 9.1
and 9.2. Here and in the following we only show results for the negative eigenvalues;
results for their positive counterparts are similar. In both cases the residuals are
computed using eigenvectors obtained from inverse iteration as in (9.21). The results
are comparable: SHIRA needs the least iterations to meet its stopping criterion, but
some of the eigenvalues are slightly less accurate than for the other two methods. On
the other hand, the Hamiltonian Krylov-Schur-type method needs two iterations less
than eigs at similar accuracy.

Next we compare the Hamiltonian Krylov-Schur-type method and eigs for com-
puting some eigenvalues of smallest magnitude; hence we apply them to H−1. As
before, we are interested in 12 eigenvalues and the search space has the size 24. Both
algorithms get the same starting vector. The results are shown in the Table 9.3.

4See http://www-user.tu-chemnitz.de/∼co/cocos/project/cocos.php

151

eigs HKS
6 iterations 4 iterations

max. condition number 26537
Eigenvalue Residual Eigenvalue Residual

−0.90592878886137 4.2 · 10−17 −0.90592878886208 6.7 · 10−17

−0.90634686034987 4.8 · 10−17 −0.90634686034995 4.7 · 10−17

−1.07560224930041 4.7 · 10−17 −1.07560224930041 4.6 · 10−17

−1.60332758476362 2.5 · 10−17 −1.60332758476305 1.3 · 10−16

−1.65786577098499 2.8 · 10−17 −1.65786577098420 1.0 · 10−16

−1.66121735256606 2.6 · 10−17 −1.66121735256562 4.9 · 10−17

Table 9.2
Fichera corner (n = 5139): eigs and Hamiltonian Krylov-Schur (HKS) applied to H2(1), 12

eigenvalues requested.

eigs HKS
8 iterations 6 iterations

max. condition number 4298
Eigenvalue Residual Eigenvalue Residual

−0.90592878886009 8.9 · 10−17 −0.90592878886360 1.4 · 10−16 2.9 · 10−15

−0.90634686034887 9.3 · 10−17 −0.90634686035032 5.5 · 10−17 2.6 · 10−15

−1.07560224929966 5.8 · 10−17 −1.07560224929977 5.2 · 10−17 2.9 · 10−15

−1.60332758476358 2.8 · 10−17 −1.60332758476361 2.6 · 10−17 3.6 · 10−15

−1.65786577098385 1.4 · 10−16 −1.65786577098420 1.0 · 10−16 3.3 · 10−14

−1.66121735256510 1.1 · 10−16 −1.66121735256192 4.8 · 10−16 5.3 · 10−14

Table 9.3
Fichera corner (n = 5139): eigs and Hamiltonian Krylov-Schur (HKS) applied to H−1, 12

eigenvalues requested. The left residuals in the HKS column are computed using eigenvectors ob-
tained by inverse iteration, the right residuals correspond to eigenvectors read off of the lower half
of the Ritz vectors of H−1.

Comparing the results it is easy to see that the number of iterations and the residuals
are very similar. In general, the Hamiltonian Krylov-Schur-type method needs fewer
iterations than eigs while yielding the same accuracy. Here we also compare residuals
obtained for eigenvectors computed by the inverse iteration (9.21) and read off of the
Ritz vectors of H−1 computed within the symplectic Lanczos process. The latter ones
are clearly less accurate, but on the other hand they are obtained as by-products and
do not require any factorization of Q(λ̃), which is the most expensive part in all of
the computations!

Next we choose an example in which the matrices M , G and K are all of size
n = 12828. The same kind of test runs as above are reported in the Tables 9.4, 9.5
and 9.6.

Gyroscopic systems. Such systems arise when modeling vibrations of spin-
ning structures such as the simulation of tire noise, helicopter rotor blades, or spin-
stabilized satellites with appended solar panels or antennas; see [54, 79, 135] and
references therein. Here, M and K are positive definite mass and stiffness matrices
and G is the gyroscopic matrix resulting from the Coriolis force. It is known that
under these conditions, all eigenvalues of the QEP are purely imaginary, see [80, 135].

For our experiments, we chose the model of a butterfly gyro as described in [30].

152

SHIRA
3 iterations

Eigenvalues Residuals
−0.90510929898159 1.810 · 10−16

−0.90529568786501 2.778 · 10−16

−1.07480595544986 6.573 · 10−17

−1.60117345104856 1.414 · 10−15

−1.65765608689995 4.930 · 10−15

−1.65914529725448 1.994 · 10−15

Table 9.4
Fichera corner (n = 12828): SHIRA with shift τ = 1, 12 eigenvalues requested.

eigs HKS
6 iterations 4 iterations

max. condition number 335526
Eigenvalue Residual Eigenvalue Residual

−0.90510929898127 8.2 · 10−17 −0.90510929894951 4.7 · 10−16

−0.90529568786417 7.4 · 10−17 −0.90529568784944 2.7 · 10−16

−1.07480595545002 7.2 · 10−17 −1.07480595544985 7.0 · 10−17

−1.60117345102312 8.7 · 10−17 −1.60117345101134 5.8 · 10−16

−1.65765608688689 7.3 · 10−17 −1.65765608679830 2.6 · 10−15

−1.65914529726339 3.7 · 10−16 −1.65914529702482 7.4 · 10−15

Table 9.5
Fichera corner (n = 12828): eigs and Hamiltonian Krylov-Schur (HKS) applied to H2(1), 12

eigenvalues requested

eigs HKS
8 iterations 6 iterations

max. condition number 4298
Eigenvalue Residual Eigenvalue Residual

−0.90510929897842 1.1 · 10−16 −0.90510929890243 1.1 · 10−15 7.2 · 10−15

−0.90529568785959 1.3 · 10−16 −0.90529568782464 6.2 · 10−16 6.1 · 10−15

−1.07480595544558 1.2 · 10−16 −1.07480595544473 1.4 · 10−16 7.6 · 10−16

−1.60117345102137 4.8 · 10−17 −1.60117345100988 6.5 · 10−16 1.1 · 10−12

−1.65765608688686 7.1 · 10−17 −1.65765608828382 4.1 · 10−14 1.9 · 10−10

−1.65914529726390 5.2 · 10−17 −1.65914530264081 1.7 · 10−13 2.9 · 10−10

Table 9.6
Fichera corner (n = 12828): eigs and Hamiltonian Krylov-Schur (HKS) applied to H−1,

12 eigenvalues requested. The left residuals in the HKS column are computed using eigenvectors
obtained by inverse iteration, the right residuals correspond to eigenvectors read off of the lower half
of the Ritz vectors of H−1.

The butterfly gyro is a vibrating micro-mechanical system developed for use in inertial
navigation applications.

The data matrices M,K of order n = 17361 (which are available from the Ober-
wolfach Benchmark Collection5) are obtained from a finite-element analysis performed

5See http://www.imtek.de/simulation/benchmark.

153

−10 −8 −6 −4 −2 0 2

x 10
−7

10
3

10
4

10
5

Re(λ)

Im
(λ

)

eigs
HKS

Fig. 9.11. Butterfly gyro (n = 17361): eigs and Hamiltonian Krylov-Schur (HKS) applied to
H−1, 12 eigenvalues requested.

with ANSYS using quadratic tetrahedral elements (SOLID187). As the gyroscopic
matrix G is missing, we choose a randomly generated skew-symmetric matrix with
the same sparsity pattern as K and with entries of considerably smaller magnitude
as the influence of the Coriolis force is usually much smaller than that of the stiffness
of the system.

In our first test run, we apply eigs and the Hamiltonian Krylov-Schur-type
method to H−1 to obtain the smallest frequency modes of the butterfly gyro—these
are usually the modes of interest in vibration analysis of gyroscopic systems. Both
the Hamiltonian Krylov-Schur-type method and eigs need 3 iterations to compute
12 eigenvalues. The maximal condition number encountered in the SR algorithm is
about 1.5 · 103. The accuracy of the computed eigenvalues as measured by their rela-
tive residuals is similar: for both methods, the residuals are smaller than the machine
epsilon eps. Figure 9.11 shows the computed eigenvalues with positive imaginary
parts. Obviously, the Hamiltonian Krylov-Schur-type method locates all eigenvalues
on the imaginary axis as expected from theory while for the eigenvalues computed by
eigs, it is rather difficult to decide whether or not these are purely imaginary even
so the real parts are relatively small.

In the second test run for the butterfly gyro, we try to compute interior eigen-
values. For this purpose, we choose a shift τ = 106i and applied eigs and the
Hamiltonian Krylov-Schur-type method to H2(τ). Here, eigs needs one iteration less
than the Krylov-Schur-type method (2 as compared to 3). The maximum condition
number encountered in the SR algorithm is about 3.15 · 106. The accuracy of the
computed eigenvalues seems to be not affected by this fairly large condition number:
again, all residuals are smaller than 10−16 as for eigs. But again, the new approach
yields physically meaningful results as all computed eigenvalues are located on the
imaginary axis. In contrast, the eigenvalues computed by eigs have nonzero real
parts as can be seen from Figure 9.12 except for the eigenvalue closest to the target
τ = 106i.

9.3. Conclusions. We have discussed the application of the Hamiltonian Krylov-
Schur-type method based on the symplectic Lanczos process to quadratic eigenvalue
problems with Hamiltonian symmetry. The method is an alternative to unstructured
methods like the implicitly restarted Arnoldi method as implemented in the Mat-

154

−4 −3 −2 −1 0 1 2 3 4

x 10
−8

10
6

Re(λ)

Im
(λ

)

HKS
eigs

Fig. 9.12. Butterfly gyro (n = 17361): eigs and Hamiltonian Krylov-Schur (HKS) applied to
H2(106i), 12 eigenvalues requested.

lab function eigs or its structure-preserving variant SHIRA which can be applied
to skew-Hamiltonian operators. Compared to eigs our method has the advantage of
respecting the symmetry properties inherent to the problem and thus yields mean-
ingful physical results. This is demonstrated for a stable gyroscopic system where
theoretically all eigenvalues are located on the imaginary axis. On the other hand, in
several situations the Hamiltonian Krylov-Schur-type approach is more efficient than
SHIRA. In particular, eigenvectors are directly available in case no shifts are used
while SHIRA only provides eigenvalues.

Acknowledgments My thanks go to Peter Benner, Nil Mackey and Michael
Overton for their hospitality in Chemnitz, Kalamazoo and New York during my sab-
batical. I would like to point out that the implementation of the SR algorithm in [132]
is nearly parameterized, although the implementation sets up and uses the Hamilto-
nian J-Hessenberg matrix as an 2n×2nmatrix. We thank Conny Pester for providing
the data matrices for the Fichera corner examples.

REFERENCES

[1] G.S. Ammar, P. Benner, and V. Mehrmann, A multishift algorithm for the numerical
solution of algebraic Riccati equations, Electr. Trans. Num. Anal., 1 (1993), pp. 33–48.

[2] G. Ammar, C. Mehl, and V. Mehrmann, Schur-like forms for matrix Lie groups, Lie alge-
bras and Jordan algebras, Linear Algebra Appl., 287 (1999), pp. 11–39.

[3] G.S. Ammar and V. Mehrmann, On Hamiltonian and symplectic Hessenberg forms, Linear
Algebra Appl., 149 (1991), pp. 55–72.

[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’
Guide, SIAM Publications, Philadelphia, PA, 2nd ed., 1995.

[5] A.C. Antoulas, A new result on positive real interpolation and model reduction, Systems &
Control Letters, 54 (2005), pp. 361–374.

[6] , A new result on positive real interpolation and model reduction, Systems & Control
Letters, 54 (2005), pp. 361–374.

[7] T. Apel, V. Mehrmann, and D.S. Watkins, Structured eigenvalue methods for the com-
putation of corner singularities in 3d anisotropic elastic structures, Comput. Methods
Appl. Mech. Engrg., 191 (2002), pp. 4459–4473.

[8] Z. Bai, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem,
Mathematics of Computation, 62 (1994), pp. 209–226.

155

[9] Z. Bai and Y. Su, Soar: A second-oder Arnoldi method for the solution of the quadratic
eigenvalue problem, SIAM J. Matrix Anal., 26 (2005), pp. 640–659.

[10] N.E. Barabanov, A.Kh. Gelig, G.A. Leonov, A.L. Likhtarnikov, A.S. Matveev, V.B.
Smirnova, and A.L. Fradkov, The frequency theorem (kalman-yakubovich lemma) in
control theory, Automat. Remote Control, 57 (1996), pp. 1377–1407.

[11] C. Beattie, M. Embree, and J. Rossi, Convergence of restarted Krylov subspaces to invari-
ant subspaces, SIAM J. Matrix Anal. Appl., 35 (2004), pp. 1074–1109.

[12] P. Benner, Computational methods for linear-quadratic optimization, Supplementario ai Ren-
diconti del Circolo Matematico di Palermo, Serie II (1997), pp. 21–56.

[13] , Symplectic balancing of Hamiltonian matrices, SIAM J. Sci. Statist. Comput., 22
(2000), pp. 1885–1904.

[14] P. Benner, R. Byers, V. Mehrmann, and H. Xu, Numerical methods for linear quadratic
and H∞ control problems, in Dynamical systems, control, coding, computer vision: new
trands, interfaces, and interplay, G. Picci and D.S. Gilliam, eds., vol. 25 of Progress in
systems and control theory, Birkhäuser, Basel, 1999, pp. 203–222.

[15] , Robust numerical methods for robust control, Technical Report 06–2004, Institut für
Mathematik, TU Berlin, Germany, 2004.

[16] P. Benner and H. Faßbender, A restarted symplectic Lanczos method for the Hamilto-
nian eigenvalue problem, Technical Report SPC 95 28, TU Chemnitz-Zwickau (now TU
Chemnitz), Fakultät für Mathematik, Germany, 1995.

[17] , An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue
problem, Linear Algebra Appl., 263 (1997), pp. 75–111.

[18] , An implicitly restarted Lanczos method for the symplectic eigenvalue problem, Berichte
aus der Technomathematik, Report 98–01, Zentrum für Technomathematik, FB 3 – Math-
ematik und Informatik, Universität Bremen, 28334 Bremen, FRG, 1998.

[19] , Computing passive reduced-order LTI models using structured Krylov subspace meth-
ods, preprint, TU Braunschweig, Germany, 2006.

[20] P. Benner, H. Faßbender, and M. Stoll, A Hamiltonian Krylov-Schur-type method based
on the symplectic Lanczos process, in preparation.

[21] P. Benner, H. Faßbender, and D.S. Watkins, Two connections between the SR and HR
eigenvalue algorithms, Linear Algebra Appl., 272 (1997), pp. 17–32.

[22] P. Benner and D. Kressner, Balancing sparse Hamiltonian matrices, Linear Algebra Appl.,
415 (2006), pp. 3–19.

[23] , Algorithm 8xx: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian
matrices, ACM Transactions on Mathematical Software, (to appear).

[24] P. Benner, A. Laub, and V. Mehrmann, A collection of benchmark examples for the nu-
merical solution of algebraic Riccati equations II: Discrete-time case, Tech. Report SPC
95 23, Fak. f. Mathematik, TU Chemnitz–Zwickau, 09107 Chemnitz, FRG, 1995. Avail-
able from http://www.tu-chemnitz.de/sfb393/spc95pr.html.

[25] P. Benner, V. Mehrmann, and D.C. Sorensen, Dimension Reduction of Large-Scale Sys-
tems, vol. 45 of Lecture Notes in Computational Science and Engineering, Springer-Verlag,
Berlin/Heidelberg, 2005.

[26] P. Benner, V. Mehrmann, and H. Xu, A new method for computing the stable invariant
subspace of a real Hamiltonian matrix, J. Comput. Appl. Math., 86 (1997), pp. 17–43.

[27] , A numerically stable, structure preserving method for computing the eigenvalues of
real Hamiltonian or symplectic pencils, Numerische Mathematik, 78 (1998), pp. 329–358.

[28] , A note on the numerical solution of complex Hamiltonian and skew-Hamiltonian
eigenvalue problems, Electr. Trans. Num. Anal., 8 (1999), pp. 115–126.

[29] R. Bhatia, Matrix factorizations and their perturbations, Linear Algebra Appl., 197–198
(1994), pp. 245–276.

[30] D. Billger, The butterfly gyro, in Dimension Reduction of Large-Scale Systems, P. Benner,
V. Mehrmann, and D.C. Sorensen, eds., vol. 45 of Lecture Notes in Computational Science
and Engineering, Springer-Verlag, Berlin/Heidelberg, Germany, 2005, pp. 349–352.

[31] S. Boyd, V. Balakrishnan, and P. Kabamba, A bisection method for computing the H∞

norm of a transfer matrix and related problems, Math. Control, Signals, Sys., 2 (1989),
pp. 207–219.

[32] M.A. Brebner and J. Grad, Eigenvalues of Ax = λBx for real symmetric matrices A and
B computed by reduction to pseudosymmetric form and the HR process, Linear Algebra
Appl., 43 (1982), pp. 99–118.

[33] W. Bunse and A. Bunse-Gerstner, Numerische lineare Algebra, Teubner, 1985.
[34] A. Bunse-Gerstner, Berechnung der Eigenwerte einer Matrix mit dem HR-Verfahren, in

Numerische Behandlung von Eigenwertaufgaben, Band 2, Birkhäuser Verlag Basel, 1979,

156

pp. 26–39.
[35] A. Bunse-Gerstner, An analysis of the HR algorithm for computing the eigenvalues of a

matrix, Linear Algebra Appl., 35 (1981), pp. 155–173.
[36] A. Bunse-Gerstner, Matrix factorizations for symplectic QR-like methods, Linear Algebra

Appl., 83 (1986), pp. 49–77.
[37] A. Bunse-Gerstner and H. Faßbender, A Jacobi-like method for solving algebraic Riccati

equations on parallel computers, IEEE Trans. Automat. Control, 42 (1997), pp. 1071–
1087.

[38] A. Bunse-Gerstner and V. Mehrmann, A symplectic QR-like algorithm for the solution
of the real algebraic Riccati equation, IEEE Trans. Automat. Control, AC-31 (1986),
pp. 1104–1113.

[39] A. Bunse-Gerstner, V. Mehrmann, and D.S. Watkins, An SR algorithm for Hamiltonian
matrices based on Gaussian elimination, Methods of Operations Research, 58 (1989),
pp. 339–356.

[40] J.V. Burke, A.S. Lewis, and M.L. Overton, Robust stability and a criss-cross algorithm
for pseudospectra, IMA J. Numer. Anal., 23 (2003), pp. 359–375.

[41] R. Byers, Hamiltonian and symplectic algorithms for the algebraic Riccati equation, PhDthe-
sis, Cornell University, Dept. Comp. Sci., Ithaca, NY, 1983.

[42] , A Hamiltonian QR-algorithm, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 212–229.
[43] , A bisection method for measuring the distance of a stable to unstable matrices, SIAM

J. Sci. Statist. Comput., 9 (1988), pp. 875–881.
[44] , A Hamiltonian-Jacobi algorithm, IEEE Trans. Automat. Control, 35 (1990), pp. 566–

570.
[45] R. Byers and D. Kressner, Structured condition numbers for invariant subspaces, SIAM J.

Matrix Anal. Appl., (to appear).
[46] D. Calvetti, L. Reichel, and D.C. Sorensen, An implicitly restarted Lanczos method for

large symmetric eigenvalue problems, Electr. Trans. Num. Anal., 2 (1994), pp. 1–21.
[47] X.-W. Chang, On the sensitivity of the SR decomposition, Linear Algebra Appl., 282 (1998),

pp. 297–310.
[48] D. Chu, X. Liu, and V. Mehrmann, A numerically strongly stable method for computing the

Hamiltonian Schur form, to appear in Numer. Math., (2006).
[49] T.A. Davis, Umfpack version 4.4 user guide, tech. report, Dept. of Computer and Information

Science and Engineering, Univ. of Florida, Gainesville, FL, 2005.
[50] J. Della-Dora, Sur quelques Algorithmes de recherche de valeurs propres, Thése,

L’Université Scientifique et Medicale de Grenoble, 1973.
[51] , Numerical linear algorithms and group theory, Linear Algebra Appl., 10 (1975),

pp. 267–283.
[52] J.W. Demmel, J.r. Gilbert, and X.S. Li, Superlu users’ guide, tech. report, Lawrence

Berkeley National Laboratory, 2003.
[53] L. Elsner, On some algebraic problems in connection with general eigenvalue algorithms,

Linear Algebra Appl., 26 (1979), pp. 123–138.
[54] K. Elssel and H. Voss, Reducing huge gyroscopic eigenproblems by automated multi-level

substructuring, Arch. Appl. Mech., 76 (2006), pp. 171–179.
[55] H. Faßbender, Symplectic methods for the symplectic eigenproblem, Kluwer Aca-

demic/Plenum Publishers, New York, 2000.
[56] H. Faßbender, D.S. Mackey, and N. Mackey, Hamilton and Jacobi come full circle:

Jacobi algorithms for structured Hamiltonian eigenproblems, Linear Algebra Appl., 332-
334 (2001), pp. 37–80.

[57] W.R. Ferng, W.-W. Lin, and C.-S. Wang, The shift-inverted J-Lanczos algorithm for the
numerical solutions of large sparse algebraic Riccati equations, Comput. Math. Appl., 33
(1997), pp. 23–40.

[58] , Errata to ’the shift-inverted J-Lanczos algorithm for the numerical solutions of large
sparse algebraic Riccati equations’, Comput. Math. Appl., 38 (1999), pp. 253–255.

[59] J.G.F. Francis, The QR transformation, Part I and Part II, Comput. J., 4 (1961), pp. 265–
271 and 332–345.

[60] G. Freiling, V. Mehrmann, and H. Xu, Existence, uniqueness and parameterization of
Lagrangian invariant subspaces, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 1045–1069.

[61] R.W. Freund, Transpose-free quasi-minimal residual methods for non-Hermitian linear sys-
tems, in Recent advances in iterative methods. Papers from the IMA workshop on iter-
ative methods for sparse and structured problems, held in Minneapolis, MN, February
24-March 1, 1992., G. Golub et al., ed., vol. 60 of IMA Vol. Math. Appl., New York, NY,
1994, Springer–Verlag, pp. 69–94.

157

[62] , Model reduction methods based on krylov subspaces, Acta Numerica, 12 (2003),
pp. 267–319.

[63] R.W. Freund, M.H. Gutknecht, and N.M. Nachtigal, An implementation of the look-
ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993),
pp. 137–158.

[64] R. Freund and V. Mehrmann, A symplectic look-ahead Lanczos algorithm for the Hamilto-
nian eigenvalue problem. manuscript.

[65] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, 3rd ed., 1996.

[66] E.J. Grimme, D.C. Sorensen, and P. Van Dooren, Model reduction of state space systems
via an implicitly restarted Lanczos method, Numer. Algorithms., 12 (1996), pp. 1–31.

[67] S. Gugercin and A.C. Antoulas, A survey of model reduction by balanced truncation and
some new results, International Journal of Control, 77 (2004), pp. 748–766.

[68] C-H. Guo and P. Lancaster, Analysis and modification of Newton’s method for algebraic
riccati equations, Math. Comp., 67 (1998), pp. 1089–1105.

[69] M. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algo-
rithms, Part I, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 594–639.

[70] , A completed theory of the unsymmetric Lanczos process and related algorithms, Part
II, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 15–58.

[71] A.S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York,
1964.

[72] Z. Jia, The convergence of generalized Lanczos methods for large unsymmetric eigenproblems,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 843–862.

[73] W. Kahan, B.N. Parlett, and E. Jiang, Residual bounds on approximate eigensystems of
nonnormal matrices, SIAM J. Numer. Anal., 19 (1982), pp. 470–484.

[74] M. Karow, D. Kressner, and F. Tisseur, Structured eigenvalue condition numbers, Nu-
merical Analysis Report No. 467, Manchester Centre for Computational Mathematics,
Manchester, England, (2005).

[75] M.M. Konstantinov, V. Mehrmann, and P.Hr. Petkov, Perturbation analysis for the
Hamiltonian Schur and block-Schur forms, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 387–424.

[76] D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems, vol. 46
of Lecture Notes in Computational Science and Engineering, Springer, Berlin, 2005.

[77] V.N. Kublanoskaja, On some algorithms for the solution of the complete eigenvalue problem,
U.S.S.R. Comput. Math. and Math. Phys., 3 (1961), pp. 637–657.

[78] A. Kugi and K. Schlacher, Analyse und Synthese nichtlinearer dissipativer Systeme: Ein
Überblick, Automatisierungstechnik, 50 (2002), pp. 63–69 and 103–111.

[79] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, UK, 1966.
[80] , Strongly stable gyroscopic systems, Electr. J. Linear Algebra, 5 (1999), pp. 53–66.
[81] P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford University Press,

Oxford, 1995.
[82] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differ-

ential and integral operators, J. Res. Nat. Bur. Standards, 45 (1950), pp. 255–282.
[83] A.J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat.

Control, AC-24 (1979), pp. 913–921. (See also Proc. 1978 CDC (Jan. 1979), pp. 60-65).
[84] , Invariant subspace methods for the numerical solution of Riccati equations, in The

Riccati Equation, S. Bittanti, A.J. Laub, and J.C. Willems, eds., Springer-Verlag, Berlin,
1991, pp. 163–196.

[85] A.J. Laub and K.R. Meyer, Canonical forms for symplectic and Hamiltonian matrices,
Celestial Mechanics, 9 (1974), pp. 213–238.

[86] R.B. Lehoucq, Analysis and Implementation of an implicitly restarted Arnoldi Iteration,
PhD thesis, Rice University, Dep. Computational and Applied Mathematics, Houston,
Texas, 1995.

[87] , On the convergence of an implicitly restarted Arnoldi method, tech. report, Sandia
National Laboratory, P.O. Box 5800, MS 1110, Albuquerque, NM 87185-1110, 1999.

[88] , Implicitly restarted Arnoldi methods and subspace iteration, SIAM J. Matrix Anal.
Appl., 23 (2001), pp. 551–562.

[89] R.B. Lehoucq and D.C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi
iteration, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821.

[90] R.B. Lehoucq, D.C. Sorensen, and C. Yang, ARPACK user’s guide. Solution of large-
scale eigenvalue problems with implicitly restarted Arnoldi methods, SIAM Publications,
Philadelphia,PA, 1998.

158

[91] W.-W. Lin and T.-C. Ho, On Schur type decompositions for Hamiltonian and symplectic
pencils, tech. report, Institute of Applied Mathematics, National Tsing Hua University,
1990.

[92] W.-W. Lin, V. Mehrmann, and H. Xu, Canonical forms for Hamiltonian and symplectic
matrices and pencils, Linear Algebra Appl., 302-303 (1999), pp. 469–533.

[93] Z.-S. Liu, On the extended HR algorithm, tech. report, Center for Pure and Applied Mathe-
matics, University of California, Berkeley, 1992.

[94] L. Lopez and V. Simoncini, Preserving geometric properties of the exponential matrix by
block Krylov subspace methods, Preprint, (2005).

[95] D.S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for
matrix polynomials, SIAM J. Matrix Anal., (to appear).

[96] M. Maess and L. Gaul, Simulation of vibro-acoustics in flexible piping systems, GAMM
Mitteilungen, 28 (2005), pp. 37–55.

[97] V. Mehrmann, Der SR-Algorithmus zur Berechnung der Eigenwerte einer Matrix, Diplo-
marbeit, Universität Bielefeld, Bielefeld, FRG, 1979.

[98] , The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution,
no. 163 in Lecture Notes in Control and Information Sciences, Springer-Verlag, Heidelberg,
1991.

[99] V. Mehrmann and E. Tan, Defect correction methods for the solution of algebraic Riccati
equations, IEEE Trans. Automat. Control, 33 (1988), pp. 695–698.

[100] V. Mehrmann and D.S. Watkins, Structure-preserving methods for computing eigenpairs of
large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Statist. Comput., 22
(2000), pp. 1905–1925.

[101] , Structure-preserving methods for computing pairs of large sparse skew-
Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Statist. Comput., 22 (2001), pp. 1905–
1925.

[102] V. Mehrmann and H. Xu, Canonical forms for Hamiltonian and symplectic matrices and
pencils, Tech. Report SFB393/98–07, Fak. f. Mathematik, TU Chemnitz–Zwickau, 09107
Chemnitz, FRG, 1998.

[103] Gao Mei, A new method for solving the algebraic Riccati equation, master’s thesis, Nanjing
Aeronautical Institute, Campus P.O. Box 245, Nanjing, P.R. China, 1986.

[104] R.B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems,
Mathematics of Computation, 65 (1996), pp. 1213–1230.

[105] E.E. Osborne, On preconditioning of matrices, Journal of the ACM, 7 (1960), pp. 338–345.
[106] C.C. Paige, The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matri-

ces, PhD thesis, University of London (UK), 1971.
[107] , Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem,

Linear Algebra Appl., 1980 (1980), pp. 235–258.
[108] C.C. Paige and C.F. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear

Algebra Appl., 41 (1981), pp. 11–32.
[109] B.N. Parlett, Canonical decomposition of Hessenberg matrices, Mathematics of Computa-

tion, 21 (1967), pp. 223–227.
[110] , The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, New Jersey,

1980.
[111] B.N. Parlett and C. Reinsch, Balancing a matrix for calculation of eigenvalues and eigen-

vectors, Numerische Mathematik, 13 (1969), pp. 293–304.
[112] B.N. Parlett, D.R. Taylor, and Z.A. Liu, A look-ahead Lanczos algorithm for unsymmet-

ric matrices, Mathematics of Computation, 44 (1985), pp. 105–124.
[113] C. Pester, COCOS, computation of corner singularities, tech. report, TU Chemnitz, Preprint

SFB393/05-03, 2005.
[114] , Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue problems, J. In-

tegral Equations Appl., 17 (2005), pp. 71–89.
[115] A.C. Raines and D.S. Watkins, A class of Hamiltonian-symplectic methods for solving the

algebraic riccati equation, Linear Algebra Appl., 205/206 (1994), pp. 1045–1060.
[116] J. Rosam, Berechnung der Rissgeometrie bei spröden elastischen Körpern, Diplomarbeit, TU

Chemnitz, 2004.
[117] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Zeitschrift für angewandte Math-

ematik und Physik, 5 (1954), pp. 233–251.
[118] , Solution of eigenvalue problems with the LR-transformation, National Bureau of Stan-

dards Applied Mathematics Series, 49 (1958), pp. 47–81.
[119] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric

matrices, Linear Algebra Appl., 34 (1980), pp. 269–295.

159

[120] , Numerical methods for large eigenvalue problems: theory and applications, John Wiley
and Sons, New York, 1992.

[121] O. Schenk and K. Gärtner, Pardiso user guide version 1.2.3, tech. report, Computer Sci-
ence Department, University of Basel, Switzerland, 2005.

[122] F. Schmidt, T. Friese, L. Zschiedreich, and P. Deuflhard, Adaptive multigrid methods
for the vectorial Maxwell eigenvalue problem for optical waveguide design, in Mathemat-
ics. Key Technology for the Future, W. Jäger and H.-J. Krebs, eds., Springer-Verlag, 2003,
pp. 279–292.

[123] V. Sima, Algorithms for Linear-Quadratic Optimization, vol. 200 of Pure and Applied Math-
ematics, Marcel Dekker, Inc., New York, NY, 1996.

[124] V. Simoncini, Ritz and pseudo-Ritz values using matrix polynomials, Linear Algebra Appl.,
241-243 (1996), pp. 787–801.

[125] G.L.G. Sleijpen, A.G.L. Booten, D.R. Fokkema, and H.A. Van der Vorst, Jacobi-
Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT,
36 (1996), pp. 595–633.

[126] D.C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[127] , Deflation for implicitly restarted Arnoldi methods, tech. report, Department of Com-
putational and Applied Mathematics, Rice University, Houston, Texas, 1998.

[128] , Numerical methods for large eigenvalue problems, Acta Numerica, (2002), pp. 519–584.
[129] , Passivity preserving model reduction via interpolation of spectral zeros, Systems &

Control Letters, 54 (2005), pp. 347–360.
[130] G.W. Stewart, A Krylov-Schur algorithm for large eigenproblems, SIAM J. Matrix Anal.

Appl., 23 (2001), pp. 601–614.
[131] , Matrix Algorithms, Volume II: Eigensystems, SIAM , Philadelphia, USA, 2001.
[132] M. Stoll, Locking und Purging für den Hamiltonischen Lanczos-Prozess, Diplomarbeit, TU

Chemnitz, Fakultät für Mathematik, Germany, 2005.
[133] D.R. Taylor, Analysis of the look ahead Lanczos algorithm, PhD thesis, Center for Pure and

Applied Mathematics, University of California, Berkley, CA, 1982.
[134] F. Tisseur, Stability of structured Hamiltonian eigensolvers, SIAM J. Matrix Anal. Appl.,

23 (2001), pp. 103–125.
[135] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43 (2001),

pp. 235–286.
[136] C.F. Van Loan, A symplectic method for approximating all the eigenvalues of a Hamiltonian

matrix, Linear Algebra Appl., 16 (1984), pp. 233–251.
[137] D.S. Watkins, Understanding the QR algorithm, SIAM Review, 24 (1982), pp. 427–440.
[138] , Fundamentals of matrix computations, John Wiley & Sons, Inc., New York, 1991.
[139] , On Hamiltonian and symplectic Lanczos processes, Linear Algebra Appl., 385 (2004),

pp. 23–45.
[140] , On the reduction of a Hamiltonian matrix to Hamiltonian Schur form, to appear in

Electron. Trans. Numer. Anal., (2006).
[141] D.S. Watkins and L. Elsner, Chasing algorithms for the eigenvalue problem, SIAM J. Matrix

Anal. Appl., 12 (1991), pp. 374–384.
[142] , Convergence of algorithms of decomposition type for the eigenvalue problem, Linear

Algebra Appl., 143 (1991), pp. 19–47.
[143] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.
[144] J.C. Willems, Dissipative dynamical systems, part i: General theory, Arch. Rational Mech.

Anal., 45 (1972), pp. 321–351.
[145] N. Wong, V. Balakrishnan, and C.-K. Koh, Passivity-preserving model reduction via a

computationally efficient project-and-balance scheme, in Proc. Design Automation Con-
ference, San Diego, CA, June 2004, pp. 369–374.

[146] K. Zhou, J.C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper
Saddle River, NJ, 1996.

160

Appendix A. Here we will show that (5.6)

ζ′′′2 = c23c2b
′′
2/s2

holds. We have

b′′2 = b′2 + d3ν
′′
2 /c3

= (c2b1 + s2ζ
′
2) + d3(c

2
2ν

′
2 − 2c2s2δ

′
2 − s22β′

2)/c3

= c2b1 + s2ζ
′
2 + d3c

2
2ν

′
2/c3 − 2d3c2s2δ

′
2/c3 − d3s

2
2β

′
2/c3

= c2c1s1(δ2 − δ1) + s2(c
2
1 − s21)ζ2 + s2c1s1(β2 − β1) + d3c

2
2(c

2
1ν2 + s21ν1)/c3

− 2d3c2s2(c
2
1δ2 + s21δ1)/c3 − d3s

2
2(s

2
1β1 + c21β2 − 2c1s1ζ2)/c3

= −δ1(c2c1s1 + 2d3c2s2s
2
1/c3) + δ2(c2c1s1 − 2d3c2s2c

2
1/c3) + ν1d3c

2
2s

2
1/c3

+ ν2d3c
2
2c

2
1/c3 − β1(s2c1s1 + d3s

2
2s

2
1/c3) + β2(s2c1s1 − d3s

2
2c

2
1/c3)

+ ζ2(s2(c
2
1 − s21) + 2d3s

2
2c1s1/c3)

For ease of reference, we will use the following notation for the multiplicative terms

b′′2 = −δ1θ1 + δ2θ2 + ν1θ3 + ν2θ4 − β1θ5 + β2θ6 + ζ2θ7

Now, let us denote

r1 = −δ1θ1 + δ2θ2 + ν1θ3 + ν2θ4,

r2 = β1θ5 + β2θ6 + ζ2θ7,

then

b′′2 = r1 + r2.

Now let us consider ζ′′′2 .

ζ′′′2 = c23ζ
′′
2 − c3d3(δ̃1 + δ′′2),

= c23(c2ζ
′
2 − s2b1)− c3d3(c

2
1δ1 + s21δ2 + (c22 − s22)δ′2 + c2s2(ν

′
2 + β′

2))

= c23c2ζ
′
2 − c23s2b1 − c3d3c

2
1δ1 − c3d3s

2
1δ2 − c3d3(c

2
2 − s22)δ′2 − c3d3c2s2ν

′
2

− c3d3c2s2β
′
2

= c23c2((c
2
1 − s21)ζ2 + c1s1(β2 − β1))− c23s2c1s1(δ2 − δ1)− c3d3c

2
1δ1 − c3d3s

2
1δ2

− c3d3(c
2
2 − s22)(c21δ2 + s21δ1)− c3d3c2s2(c

2
1ν2 + s21ν1)

− c3d3c2s2(s
2
1β1 + c21β2 − 2c1s1ζ2)

= δ1(c
2
3s2c1s1 − c3d3c

2
1 − c3d3(c

2
2 − s22)s21)− δ2(c23s2c1s1

+ c3d3s
2
1 + c3d3(c

2
2 − s22)c21)− ν1d3c3c2s2s

2
1 − ν2d3c3c2s2c

2
1

− β1(c
2
3c2c1s1 + c3d3c2s2s

2
1) + β2(c

2
3c2c1s1 − c3d3c2s2c

2
1)

+ ζ2(c
2
3c2(c

2
1 − s21) + 2c3d3c2s2c1s1)

161

Rewriting the terms multiplied to δ1, δ2, ν1, ν2, β1, β2, ζ2 in terms of θ1, . . . , θ7 we ob-
tain

c23s2c1s1 − c3d3c
2
1 − c3d3(c

2
2 − s22)s21 = c23s2c1s1 − c3d3c

2
1 − c3d3(1− 2s22)s

2
1

= c23s2c1s1 − c3d3c
2
1 − c3d3s

2
1 + 2c3d3s

2
2s

2
1

= (c23s2c1s1 + 2c3d3s
2
2s

2
1)− c3d3

= (c23s2/c2)(c2c1s1 + 2d3c2s2s
2
1/c3)− c3d3

= c23s2θ1/c2 − c3d3

−(c23s2c1s1 + c3d3s
2
1 + c3d3(c

2
2 − s22)c21) = −(c23s2c1s1 + c3d3s

2
1 + c3d3(1 − 2s22)c

2
1)

= −(c23s2c1s1 + c3d3s
2
1 + c3d3c

2
1 − 2c3d3s

2
2c

2
1)

= −(c23s2c1s1 − 2c3d3s
2
2c

2
1 + c3d3)

= −(c23s2/c2)(c2c1s1 − 2d3c2s2c
2
1/c3)− c3d3

= −c23s2θ2/c2 − c3d3

−d3c3c2s2s
2
1 = −(c23s2/c2)(d3c

2
2s

2
1/c3)

= −c23s2θ3/c2
−d3c3c2s2c

2
1 = −(c23s2/c2)(d3c

2
2c

2
1/c3)

= −c23s2θ4/c2
−(c23c2c1s1 + c3d3c2s2s

2
1) = −(c23c2/s2)(s2c1s1 + d3s

2
2s

2
1/c3)

= −c23c2θ5/s2
c23c2c1s1 − c3d3c2s2c

2
1 = (c23c2/s2)(s2c1s1 − d3s

2
2c

2
1/c3)

= c23c2θ6/s2

c23c2(c
2
1 − s21) + 2c3d3c2s2c1s1 = (c23c2/s2)(s2(c

2
1 − s21) + 2d3s

2
2c1s1/c3)

= c23c2θ7/s2

and therefore

ζ′′′2 = −c3d3(δ1 + δ2)− (c23s2/c2)(−δ1θ1 + δ2θ2 + ν1θ3 + ν2θ4)

+ (c23c2/s2)(−β1θ5 + β2θ6 + ζ2θ7)

= −c3d3(δ1 + δ2)− (c23s2/c2)r1 + (c23c2/s2)r2.

In order to show that

ζ′′′2 = c23c2b
′′
2/s2 = c23c2(r1 + r2)/s2,

we have to show that

−c3d3(δ1 + δ2)− (c23s2/c2)r1 = c23c2r1/s2.

This is equivalent to

0 = −c3d3c2s2(δ1 + δ2)− c23s22r1 − c23c22r1 = −c3d3c2s2(δ1 + δ2)− c23r1,

that is

c3r1 = −d3c2s2(δ1 + δ2).

162

c2 and s2 stem from a Givens transformation that eliminates b2 against b1, hence

c2 = b1/
√
t2

= c1s1(δ2 − δ1)/
√
t2

s2 = b2/
√
t2

= c1s1(ν2 − ν1)/
√
t2

where

t2 = b21 + b22

= c21s
2
1((δ2 − δ1)2 + (ν2 − ν1)2).

c3 and d3 stems from a Gauss transformation that eliminates b′1 against ν′1, hence for
simplicity we can assume that

c3 = ν′1 = (c21ν1 + s21ν2)

d3 = −b′1 = −(c2b1 + s2b2)

= −(c2c1s1(δ2 − δ1) + s2c1s1(ν2 − ν1))
= −(c22

√
t2 + s22

√
t2)

= −
√
t2.

Therefore,

d3s2 = −c1s2(ν2 − ν1),
d3c2 = −c1s1(δ2 − δ1).

Hence,

c3r1 = −δ1(c3c2c1s1 + 2d3c2s2s
2
1) + δ2(c3c2c1s1 − 2d3c2s2c

2
1) + ν1d3c

2
2s

2
1 + ν2d3c

2
2c

2
1

= c2{c3c1s1(δ2 − δ1)− 2d3s2(s
2
1δ1 + c21δ2) + d3c2(s

2
1ν1 + c21ν2)}

= c2c1s1{(c21ν1 + s21ν2)(δ2 − δ1) + 2(ν2 − ν1)(s21δ1 + c21δ2)− (δ2 − δ1)(s21ν1 + c21ν2)}
= c2c1s1{(δ2 − δ1)(c21ν1 + s21ν2 − s21ν1 − c21ν2) + 2(ν2 − ν1)(s21δ1 + c21δ2)}
= c2c1s1{(δ2 − δ1)(c21(ν1 − ν2) + s21(ν2 − ν1)) + 2(ν2 − ν1)(s21δ1 + c21δ2)}
= c2c1s1{(δ2 − δ1)(ν2 − ν1)(s21 − c21) + 2(ν2 − ν1)(s21δ1 + c21δ2)}
= c2c1s1(ν2 − ν1){(δ2 − δ1)(s21 − c21) + 2(s21δ1 + c21δ2)}
= c2c1s1(ν2 − ν1){s21δ2 − s21δ1 − c21δ2 + c21δ1 + 2(s21δ1 + c21δ2)}
= c2c1s1(ν2 − ν1){s21δ2 − c21δ2 + 2c21δ2 − s21δ1 + c21δ1 + 2s21δ1}
= c2c1s1(ν2 − ν1)(δ2 + δ1)

= −d3c2s2(δ1 + δ2).

Hence, (5.6) holds.

163

Appendix B.

function [d,b,z,v,S,error,condmax] = ...

param_sr_implicit_single(d,b,z,v,shift,S,n,badcond)

% Computes a single shifted implicit SR step for a parameterized

% J-Hessenberg matrix. Given a Hamiltonian matrix

% H = [diag(d) diag(b)+diag(z(2:n),1)+diag(z(2:n),-1); diag(v) -diag(d)]

% and a real shift, the SR decomposition of H - shift*I is SR with a symplectic

% matrix SS and an upper J-triangular matrix R.

% An SR step computes HH = inv(SS)*H*SS = R*SS + shift*I.

% Here, HH = inv(SS)*H*SS is computed implicitly. H is never used explicitly, all

% computations are done on the parameters which determine H, that is the parameters

% which determine HH are computed.

%

% If the condition number of any of the Gaussian elimination matrices

% is larger than the given tolerance badcond, error is set to 1.

% Otherwise error is set to 0 and condmax is set to the maximum of

% the condition numbers of the previously used Gaussian elimination matrices

% and the condition number of the current elimination matrix.

%

% on input

% d - delta(1:n) which determines H as described above

% b - beta(1:n) which determines H as described above

% z - zeta(2:n) which determines H as described above

% v - nu(1:n) which determines H as described above

% shift - real shift to be used in the implicit SR step

% S - symplectic transformation matrix used so far

% n - size of d, b and v, S is 2n-x-2n

% badcond - tolerance for maximal admissible condition number

% of Gaussian elimination matrices

%

%

% on output

% d - delta(1:n) which determines HH as described above

% b - beta(1:n) which determines HH as described above

% z - zeta(2:n) which determines HH as described above

% v - nu(1:n) which determines HH as described above

% S - updated symplectic transformation matrix

% error - 0 if there was no problem with the Gaussian elimination,

% 1 otherwise

% condmax - maximal condition number of all symplectic Gauss

% transformation used

%

% Reference:

% H. Fassbender: The parameterized Hamiltonian SR algorithm

% Preprint 2005

%

%

% H. Fassbender, 12/2005 MATLAB 7.1.0.246 (R14) Service Pack3

condmax = 1;

%

%first step, create bulge

%

[c,s] = givens(d(1)-shift,v(1));

164

c2 = c*c;

s2 = s*s;

cs = c*s;

dneu = (c2-s2)*d(1) +cs*(v(1)+b(1));

vneu = c2*v(1)-s2*b(1)-2*cs*d(1);

bneu = c2*b(1)-s2*v(1)-2*cs*d(1);

zneu = c*z(2);

bulge = s*z(2);

d(1) = dneu;

v(1) = vneu;

b(1) = bneu;

z(2) = zneu;

S(1:2*n,[1 n+1]) = S(1:2*n,[1 n+1])*[c -s; s c];

%

% chase the bulge

%

for j = 1:n-1

%

% Gaussian elimination to delete bulge in (j+1,j),

% introduces a new one in (j,j+1)

%

[c,g,Lcond,error] = gauss1(bulge,v(j),condmax,badcond);

condmax = max(condmax,Lcond);

if condmax < badcond

c2 = c*c;

g2 = g*g;

cg = c*g;

vjneu = v(j)/c2;

vjp1neu = v(j+1)/c2;

bjneu = -v(j+1)*g2+c2*b(j);

bjp1neu = c2*b(j+1)-cg*bulge;

zjneu = c*z(j);

zjp1neu = -cg*(d(j)+d(j+1))+c2*z(j+1);

bulge = g*v(j+1)/c;

v(j) = vjneu;

v(j+1) = vjp1neu;

b(j) = bjneu;

b(j+1) = bjp1neu;

z(j) = zjneu;

z(j+1) = zjp1neu;

if j < n-1

zjp2neu = c*z(j+2);

z(j+2) = zjp2neu;

end

S(1:2*n,[j j+1 n+j n+j+1]) = S(1:2*n,[j j+1 n+j n+j+1]) * ...

[1/c 0 0 -g; 0 1/c -g 0; 0 0 c 0; 0 0 0 c];

%

% Givens elimination to delete bulge in (j,j+1),

% introduces a new one in (j+2,j+1)

%

[c,s] = givens(z(j+1),-bulge);

c2 = c*c;

s2 = s*s;

cs = c*s;

165

djp1neu = c2*d(j+1)+cs*(v(j+1)+b(j+1))-s2*d(j+1);

vjp1neu = c2*v(j+1)-2*cs*d(j+1)-s2*b(j+1);

zjp1neu = c*z(j+1)-s*bulge;

bjp1neu = c2*b(j+1)-2*cs*d(j+1)-s2*v(j+1);

bulge = s*z(j+2);

d(j+1) = djp1neu;

v(j+1) = vjp1neu;

z(j+1) = zjp1neu;

b(j+1) = bjp1neu;

if j < n-1

zjp2neu = c*z(j+2);

z(j+2) = zjp2neu;

end

S(1:2*n,[j+1 n+j+1]) = S(1:2*n,[j+1 n+j+1])*[c -s; s c];

else

error = 1;

return

end

end

166

function [d,b,z,v,S,error,condmax] = ...

param_sr_implicit_double(d,b,z,v,shift,S,n,badcond)

% Computes a double shifted implicit SR step for a parameterized

% Hamiltonian J-Hessenberg matrix. Given a Hamiltonian matrix

% H = [diag(d) diag(b)+diag(z(2:n),1)+diag(z(2:n),-1); diag(v) -diag(d)]

% and a real or a purely imaginary shift, the SR decomposition of

% (H - shift*I)(H + shift*I) is SR with a symplectic

% matrix SS and an upper J-triangular matrix R.

% An SR step computes HH = inv(SS)*H*SS.

% Here, HH = inv(SS)*H*SS is computed implicitly. H is never used explicitly, all

% computations are done on the parameters which determine H, that is the parameters

% which determine HH are computed.

% In case shift == Inf, a Rayleigh-quotient like shift strategy is used.

%

% If the condition number of any of the Gaussian elimination matrices

% is larger than the given tolerance badcond, error is set to 1.

% Otherwise error is set to 0 and condmax is set to the maximum of

% the condition numbers of the previously used Gaussian elimination matrices

% and the condition number of the current elimination matrix.

%

% on input

% d - delta(1:n) which determines H as described above

% b - beta(1:n) which determines H as described above

% z - zeta(2:n) which determines H as described above

% v - nu(1:n) which determines H as described above

% shift - real shift to be used in the implicit SR step

% if shift == Inf, a Rayleigh-quotient like shift is used

% S - symplectic transformation matrix used so far (might be

% nonsquare, if used inside SR iteration when deflation has

% taken place)

% n - size of d, b and v, S is sn-x-2n

% badcond - tolerance for maximal admissible condition number

% of Gaussian elimination matrices

%

%

% on output

% d - delta(1:n) which determines HH as described above

% b - beta(1:n) which determines HH as described above

% z - zeta(2:n) which determines HH as described above

% v - nu(1:n) which determines HH as described above

% S - updated symplectic transformation matrix

% error - 0 if there was no problem with the Gaussian elimination,

% 1 otherwise

% condmax - maximal condition number of all symplectic Gauss

% transformation used

%

% Reference:

% H. Fassbender: The parameterized Hamiltonian SR algorithm

% Preprint 2006

%

%

% H. Fassbender, 01/2006 MATLAB 7.1.0.246 (R14) Service Pack3

condmax = 1; sn = size(S,1);

167

%

%first step, create bulge

%

if shift == Inf

[c,s] = givens(d(1)*d(1)+v(1)*b(1)-d(n)^2-b(n)*v(n),v(1)*z(2));

else

[c,s] = givens(d(1)*d(1)+v(1)*b(1)-shift*shift,v(1)*z(2));

end

c2 = c*c;

s2 = s*s;

cs = c*s;

d1neu = c2*d(1) + s2*d(2);

d2neu = s2*d(1) + c2*d(2);

v1neu = c2*v(1) + s2*v(2);

v2neu = s2*v(1) + c2*v(2);

b1neu = c2*b(1) + s2*b(2) + 2*cs*z(2);

b2neu = s2*b(1) + c2*b(2) - 2*cs*z(2);

z2neu = (c2-s2)*z(2) + cs*(b(2)-b(1));

bulge1 = cs*(d(2)-d(1));

bulge2 = cs*(v(2)-v(1));

d(1) = d1neu;

d(2) = d2neu;

v(1) = v1neu;

v(2) = v2neu;

b(1) = b1neu;

b(2) = b2neu;

z(2) = z2neu;

if n > 2

z3neu = c*z(3);

bulge3 = s*z(3);

z(3) = z3neu;

end

S(1:sn,[1 2]) = S(1:sn,[1 2])*[c -s; s c];

S(1:sn,[n+1 n+2]) = S(1:sn,[n+1 n+2])*[c -s; s c];

%

% chase the bulge

%

for j = 1:n-1

%

% Givens elimination to delete bulge in (n+j+1,n+j),

%

[c,s] = givens(bulge1,bulge2);

c2 = c*c;

s2 = s*s;

cs = c*s;

djp1neu = (c2-s2)*d(j+1) + cs*(v(j+1)+b(j+1));

vjp1neu = c2*v(j+1) -2*cs*d(j+1) - s2*b(j+1);

zjp1neu = c*z(j+1) - s*bulge1;

bjp1neu = c2*b(j+1) - 2*cs*d(j+1) - s2*v(j+1);

bulge1neu = c*bulge1 + s*bulge2;

bulge2neu = c*bulge1 + s*z(j+1);

d(j+1) = djp1neu;

v(j+1) = vjp1neu;

z(j+1) = zjp1neu;

168

b(j+1) = bjp1neu;

bulge1 = bulge1neu;

bulge2 = bulge2neu;

if (j < n-1) & (n > 2)

zjp2neu = c*z(j+2);

bulge4 = s*z(j+2);

z(j+2) = zjp2neu;

end

S(1:sn,[j+1 n+j+1]) = S(1:sn,[j+1 n+j+1])*[c -s; s c];

%

% Gauss elimination to delete bulge in (j+1,j),

% no new entry created

%

[c,g,Lcond,error] = gauss1(bulge1,v(j),condmax,badcond);

condmax = max(condmax,Lcond);

if condmax < badcond

c2 = c*c;

g2 = g*g;

cg = c*g;

vjneu = v(j)/c2;

vjp1neu = v(j+1)/c2;

bjneu = c2*b(j) - 2*cg*bulge2 - g2*v(j+1);

bjp1neu = c2*b(j+1) - cg*bulge1;

zjneu = c*z(j);

zjp1neu = c2*z(j+1) - cg*(d(j)+d(j+1));

bulge1 = c*bulge1 + g*v(1);

bulge2 = bulge2 + g*v(j+1)/c;

v(j) = vjneu;

v(j+1) = vjp1neu;

b(j) = bjneu;

b(j+1) = bjp1neu;

z(j) = zjneu;

z(j+1) = zjp1neu;

if (j < n-1) & (n > 2)

zjp2neu = c*z(j+2);

z(j+2) = zjp2neu;

bulge3 = c*bulge3 - g*bulge4;

bulge4 = bulge4/c;

end

S(1:sn,[j j+1 n+j n+j+1]) = S(1:sn,[j j+1 n+j n+j+1]) * ...

[1/c 0 0 -g; 0 1/c -g 0; 0 0 c 0; 0 0 0 c];

%

% Givens elimination to delete bulge in (n+j+1,n+j)

% no new entry created

%

[c,s] = givens(z(j+1),-bulge2);

c2 = c*c;

s2 = s*s;

cs = c*s;

djp1neu = c2*d(j+1) + cs*(v(j+1)+b(j+1)) - s2*d(j+1);

vjp1neu = c2*v(j+1) -2*cs*d(j+1) - s2*b(j+1);

zjp1neu = -s*bulge2 + c*z(j+1);

bjp1neu = c2*b(j+1) - 2*cs* d(j+1) - s2*v(j+1);

d(j+1) = djp1neu;

169

v(j+1) = vjp1neu;

z(j+1) = zjp1neu;

b(j+1) = bjp1neu;

if (j < n-1) & (n > 2)

zjp2neu = -s*bulge4 + c*z(j+2);

bulge4 = c*bulge4 + s*z(j+2);

z(j+2) = zjp2neu;

end

S(1:sn,[j+1 n+j+1]) = S(1:sn,[j+1 n+j+1])*[c -s;s c];

%

% Givens Type II to delete bulge in (j+3,n+j)

%

if (j < n-1) & (n > 2)

[c,s] = givens(z(j+1),bulge3);

c2 = c*c;

s2 = s*s;

cs = c*s;

djp1neu = c2*d(j+1) + cs*bulge4 + s2*d(j+2);

djp2neu = s2*d(j+1) -cs*bulge4 + c2*d(j+2);

vjp1neu = c2*v(j+1) + s2*v(j+2);

vjp2neu = c2*v(j+2) + s2*v(j+1);

zjp1neu = c*z(j+1) + s*bulge3;

zjp2neu = c2*z(j+2) +cs*(b(j+2)-b(j+1)) - s2*z(j+2);

bjp1neu = c2*b(j+1) + 2*cs*z(j+2) + s2*b(j+2);

bjp2neu = s2*b(j+1) - 2*cs*z(j+2) + c2*b(j+2);

bulge1 = c2*bulge4 + cs*(d(j+2)-d(j+1));

bulge2 = cs*(v(j+2)-v(j+1));

d(j+1) = djp1neu;

d(j+2) = djp2neu;

v(j+1) = vjp1neu;

v(j+2) = vjp2neu;

z(j+1) = zjp1neu;

z(j+2) = zjp2neu;

b(j+1) = bjp1neu;

b(j+2) = bjp2neu;

if j < n-2

zjp3neu = c*z(j+3);

bulge3 = s*z(j+3);

z(j+3) = zjp3neu;

end

S(1:sn,[j+1 j+2]) = S(1:sn,[j+1 j+2])*[c -s; s c];

S(1:sn,[n+j+1 n+j+2]) = S(1:sn,[n+j+1 n+j+2])*[c -s; s c];

end

else

error = 1;

return

end

end

170

function [d,b,z,v,S,error,condmax] = ...

param_sr_implicit_quadruple(d,b,z,v,shift,S,n,badcond)

% Computes a quadruple shifted implicit SR step for a parameterized

% Hamiltonian J-Hessenberg matrix. Given a 2n-x-2n Hamiltonian matrix

% H = [diag(d) diag(b)+diag(z(2:n),1)+diag(z(2:n),-1); diag(v) -diag(d)]

% and a quadruple of complex values (shift, -shift, conj(shift), -conj(shift)),

% the SR decomposition of

% HH = (H - shift I)(H + shift I)(H - conj(shift) I)(H + conj(shift) I)

% is SR with a symplectic matrix S and an upper J-triangular matrix R.

% An SR step computes HH = inv(SS)*H*SS.

% Here, HH = inv(SS)*H*SS is computed implicitly. H is never used explicitly, all

% computations are done on the parameters which determine H, that is the parameters

% which determine HH are computed.

% In case shift == Inf, a Rayleigh-quotient like shift strategy is used.

%

% If the condition number of any of the Gaussian elimination matrices

% is larger than the given tolerance badcond, error is set to 1.

% Otherwise error is set to 0 and condmax is set to the maximum of

% the condition numbers of the previously used Gaussian elimination matrices

% and the condition number of the current elimination matrix.

%

% on input

% d - delta(1:n) which determines H as described above

% b - beta(1:n) which determines H as described above

% z - zeta(2:n) which determines H as described above

% v - nu(1:n) which determines H as described above

% shift - complex shift to be used in the implicit SR step

% if shift == Inf, a Rayleigh-quotient like shift is used

% S - symplectic transformation matrix used so far (might be

% nonsquare, if used inside SR iteration when deflation has

% taken place)

% n - size of d, b and v, S is sn-x-2n, n > 3

% badcond - tolerance for maximal admissible condition number

% of Gaussian elimination matrices

%

%

% on output

% d - delta(1:n) which determines HH as described above

% b - beta(1:n) which determines HH as described above

% z - zeta(2:n) which determines HH as described above

% v - nu(1:n) which determines HH as described above

% S - updated symplectic transformation matrix

% error - 0 if there was no problem with the Gaussian elimination,

% 1 otherwise

% condmax - maximal condition number of all symplectic Gauss

% transformation used

%

% Reference:

% H. Fassbender: The parameterized Hamiltonian SR algorithm

% Preprint 2006

%

%

% H. Fassbender, 01/2006 MATLAB 7.1.0.246 (R14) Service Pack3

171

if n < 4

[d,b,z,v,S,error,condmax] = ...

param_sr_implicit_quadruple_6(d,b,z,v,shift,S,badcond);

return

end

sn = size(S,1);

condmax = 1;

error = 0;

%

% first column of ...

%

ha = d(1)^2+v(1)*b(1);

x1 = ha^2 + v(1)*v(2)*z(2)^2;

if shift == Inf

h1 = d(n-1)^2 +v(n-1)*b(n-1);

h2 = d(n)^2 + v(n)*b(n);

h = h1 + h2;

x1 = x1 - h*ha + h1*h2 - v(n-1)*v(n)*z(n)^2;

else

h = real(2*(real(shift)^2 - imag(shift)^2));

x1 = x1 - h*ha + abs(shift)^4;

end;

x2 = v(1)*z(2)*(ha + d(2)^2 + v(2)*b(2) - h);

x3 = v(1)*v(2)*z(2)*z(3);

%

% create bulge, first part

%

[c,s] = givens(x2,x3);

c2 = c*c;

s2 = s*s;

cs = c*s;

d2neu = c2*d(2) + s2*d(3);

d3neu = s2*d(2) + c2*d(3);

v2neu = c2*v(2) + s2*v(3);

v3neu = s2*v(2) + c2*v(3);

z2neu = c*z(2);

z3neu = c2*z(3) + cs*(b(3)-b(2)) - s2*z(3);

z4neu = c*z(4);

b2neu = c2*b(2) + s2*b(3) + 2*cs*z(3);

b3neu = s2*b(2) + c2*b(3) - 2*cs*z(3);

bulge1 = cs*(d(3)-d(2));

bulge2 = cs*(v(3)-v(2));

bulge3 = -s*z(2);

bulge4 = s*z(4);

d(2) = d2neu;

d(3) = d3neu;

v(2) = v2neu;

v(3) = v3neu;

b(2) = b2neu;

b(3) = b3neu;

z(2) = z2neu;

z(3) = z3neu;

z(4) = z4neu;

S(1:sn,[2 3]) = S(1:sn,[2 3])*[c -s; s c];

172

S(1:sn,[n+2 n+3]) = S(1:sn,[n+2 n+3])*[c -s; s c];

%

% create bulge, second part

%

[c,s] = givens(x1,c*x2+s*x3);

c2 = c*c;

s2 = s*s;

cs = c*s;

d1neu = c2*d(1) + s2*d(2);

d2neu = c2*d(2) + s2*d(1);

v1neu = c2*v(1) + s2*v(2);

v2neu = c2*v(2) + s2*v(1);

b1neu = c2*b(1) + 2*cs*z(2) + s2*b(2);

b2neu = c2*b(2) - 2*cs*z(2) + s2*b(1);

z2neu = c2*z(2) + cs*(b(2)-b(1)) - s2*z(2);

z3neu = c*z(3) - s*bulge3;

bulge1neu = cs*(d(2)-d(1));

bulge2neu = s*bulge1;

bulge3neu = c*bulge1;

bulge4neu = cs*(v(2)-v(1));

bulge5 = s*bulge2;

bulge6 = c*bulge2;

bulge7 = c*bulge3 + s*z(3);

bulge8 = s*bulge4;

bulge9 = c*bulge4;

d(1) = d1neu;

d(2) = d2neu;

v(1) = v1neu;

v(2) = v2neu;

b(1) = b1neu;

b(2) = b2neu;

z(2) = z2neu;

z(3) = z3neu;

bulge1 = bulge1neu;

bulge2 = bulge2neu;

bulge3 = bulge3neu;

bulge4 = bulge4neu;

bulge10 = bulge1;

bulge11 = bulge2;

bulge12 = bulge3;

S(1:sn,[1 2]) = S(1:sn,[1 2])*[c -s; s c];

S(1:sn,[n+1 n+2]) = S(1:sn,[n+1 n+2])*[c -s; s c];

for j = 1:n-1,

%

% Chase the bulge

%

if j < n-1

%

% Givens elimination to delete bulge in (n+2+1,j),

%

[c,s] = givens(bulge2,bulge5);

c2 = c*c;

s2 = s*s;

173

cs = c*s;

djp2neu = (c2-s2)*d(j+2) + cs*(v(j+2)+b(j+2));

vjp2neu = c2*v(j+2) -2*cs*d(j+2) - s2*b(j+2);

zjp2neu = c*z(j+2) - s*bulge12;

bjp2neu = c2*b(j+2) - 2*cs*d(j+2) - s2*v(j+2);

bulge2neu = c*bulge2 + s*bulge5;

bulge3neu = c*bulge3 + s*bulge6;

bulge6neu = c*bulge6 - s*bulge3;

bulge7neu = c*bulge7 - s*bulge11;

bulge11neu = c*bulge11 + s*bulge7;

bulge12neu = c*bulge12 + s*z(j+2);

d(j+2) = djp2neu;

v(j+2) = vjp2neu;

z(j+2) = zjp2neu;

b(j+2) = bjp2neu;

bulge2 = bulge2neu;

bulge3 = bulge3neu;

bulge6 = bulge6neu;

bulge7 = bulge7neu;

bulge11 = bulge11neu;

bulge12 = bulge12neu;

if j < n-2

zjp3neu = c*z(j+3);

bulgex = s*z(j+3);

z(j+3) = zjp3neu;

end

S(1:sn,[j+2 n+j+2]) = S(1:sn,[j+2 n+j+2])*[c -s; s c];

end

%

% Givens elimination to delete bulge in (n+j+1,j),

%

[c,s] = givens(bulge1,bulge4);

c2 = c*c;

s2 = s*s;

cs = c*s;

djp1neu = (c2-s2)*d(j+1) + cs*(v(j+1)+b(j+1));

vjp1neu = c2*v(j+1)-2*cs*d(j+1)-s2*b(j+1);

bjp1neu = c2*b(j+1) - 2*cs*d(j+1) - s2*v(j+1);

zjp1neu = c*z(j+1) - s*bulge10;

bulge1neu = c*bulge1 + s*bulge4;

bulge4neu = c*bulge6 - s*bulge12;

bulge10neu = c*bulge10 + s*z(j+1);

bulge12neu = c*bulge12 + s*bulge6;

d(j+1) = djp1neu;

v(j+1) = vjp1neu;

b(j+1) = bjp1neu;

z(j+1) = zjp1neu;

bulge1 = bulge1neu;

bulge4 = bulge4neu;

bulge10 = bulge10neu;

bulge12 = bulge12neu;

if j < n-2

bulge9neu = c*bulge9;

bulgey = s*bulge9;

174

bulge9 = bulge9neu;

end

if j < n-1

zjp2neu = c*z(j+2) -s*bulge3;

bulge3neu = c*bulge3 + s*z(j+2);

z(j+2) = zjp2neu;

bulge3 = bulge3neu;

end

S(1:sn,[j+1 n+j+1]) = S(1:sn,[j+1 n+j+1])*[c -s; s c];

if j < n-1

%

% Givens elimination type II to delete bulge in (j+2,j),

%

[c,s] = givens(bulge1,bulge2);

c2 = c*c;

s2 = s*s;

cs = c*s;

djp1neu = c2*d(j+1) + cs*(bulge3+bulge12) + s2*d(j+2);

djp2neu = c2*d(j+2) - cs*(bulge3+bulge12) + s2*d(j+1);

vjp1neu = c2*v(j+1) + 2*cs*bulge4 + s2*v(j+2);

vjp2neu = c2*v(j+2) - 2*cs*bulge4 + s2*v(j+1);

bjp1neu = c2*b(j+1) + 2*cs*z(j+2) + s2*b(j+2);

bjp2neu = c2*b(j+2) - 2*cs*z(j+2) + s2*b(j+1);

zjp1neu = c*z(j+1) + s*bulge7;

zjp2neu = (c2-s2)*z(j+2) + cs*(b(j+2)-b(j+1));

bulge1neu = c*bulge1 + s*bulge2;

bulge3neu = c2*bulge3 + cs*(d(j+2)-d(j+1)) -s2*bulge12;

bulge4neu = (c2-s2)*bulge4 + cs*(v(j+2)-v(j+1));

bulge7neu = c*bulge7 - s*z(j+1);

bulge10neu = c*bulge10 + s*bulge11;

bulge11neu = c*bulge11 - s*bulge10;

bulge12neu = c2*bulge12 + cs*(d(j+2)-d(j+1)) -s2*bulge3;

d(j+1) = djp1neu;

d(j+2) = djp2neu;

v(j+1) = vjp1neu;

v(j+2) = vjp2neu;

b(j+1) = bjp1neu;

b(j+2) = bjp2neu;

z(j+1) = zjp1neu;

z(j+2) = zjp2neu;

bulge1 = bulge1neu;

bulge3 = bulge3neu;

bulge4 = bulge4neu;

bulge7 = bulge7neu;

bulge10 = bulge10neu;

bulge11 = bulge11neu;

bulge12 = bulge12neu;

if j < n-2

zjp3neu = c*z(j+3) - s*bulge9;

bulge9neu = c*bulge9 + s*z(j+3);

bulgexneu = c*bulgex - s*bulgey;

bulgeyneu = c*bulgey + s*bulgex;

z(j+3) = zjp3neu;

bulge9 = bulge9neu;

175

bulgex = bulgexneu;

bulgey = bulgeyneu;

end

S(1:sn,[j+1 j+2]) = S(1:sn,[j+1 j+2])*[c -s; s c];

S(1:sn,[n+j+1 n+j+2]) = S(1:sn,[n+j+1 n+j+2])*[c -s; s c];

end

%

% Gauss elimination to delete bulge in (j+1,j),

% no new entry created

%

[c,g,Lcond,error] = gauss1(bulge1,v(j),condmax,badcond);

condmax = max(condmax,Lcond);

if condmax < badcond

c2 = c*c;

g2 = g*g;

cg = c*g;

vjneu = v(j)/c2;

vjp1neu = v(j+1)/c2;

bjneu = c2*b(j) - 2*cg*bulge10 - g2*v(j+1);

bjp1neu = c2*b(j+1) - 2*cg*bulge1 - g2*v(j);

zjp1neu = c2*z(j+1) - cg*(d(j)+d(j+1));

zjneu = c*z(j);

bulge1neu = bulge3/c;

bulge4neu = bulge4/c;

bulge7neu = c*bulge7 - g*bulge3;

bulge10neu = bulge10 + g*v(j+1)/c;

bulge11neu = c*bulge11 + g*bulge4 ;

bulge12neu = c*bulge12;

v(j) = vjneu;

v(j+1) = vjp1neu;

b(j) = bjneu;

b(j+1) = bjp1neu;

z(j) = zjneu;

z(j+1) = zjp1neu;

bulge1 = bulge1neu;

bulge4 = bulge4neu;

bulge7 = bulge7neu;

bulge10 = bulge10neu;

bulge11 = bulge11neu;

bulge12 = bulge12neu;

if j < n-2

bulge2neu = bulgey/c;

bulge3neu = bulgex;

bulge8neu = c*bulge8 - g*bulgey;

bulge9neu = c*bulge9;

bulge2 = bulge2neu;

bulge3 = bulge3neu;

bulge8 = bulge8neu;

bulge9 = bulge9neu;

end

if j < n-1

zjp2neu = c*z(j+2);

z(j+2) = zjp2neu;

end

176

S(1:sn,[j j+1 n+j n+j+1]) = S(1:sn,[j j+1 n+j n+j+1]) * ...

[1/c 0 0 -g; 0 1/c -g 0; 0 0 c 0; 0 0 0 c];

if j < n-1

%

% Givens elimination to delete bulge in (n+j+2,n+j),

%

[c,s] = givens(bulge7,-bulge11);

c2 = c*c;

s2 = s*s;

cs = c*s;

djp2neu = (c2-s2)*d(j+2) + cs*(v(j+2)+b(j+2));

vjp2neu = c2*v(j+2) - 2*cs*d(j+2) - s2*b(j+2);

bjp2neu = c2*b(j+2) - 2*cs*d(j+2) - s2*v(j+2);

zjp2neu = c*z(j+2) - s*bulge12;

bulge1neu = c*bulge1 + s*bulge4;

bulge4neu = c*bulge4 - s*bulge1;

bulge7neu = c*bulge7 - s*bulge11;

bulge12neu = c*bulge12 + s*z(j+2);

d(j+2) = djp2neu;

v(j+2) = vjp2neu;

b(j+2) = bjp2neu;

z(j+2) = zjp2neu;

bulge1 = bulge1neu;

bulge4 = bulge4neu;

bulge7 = bulge7neu;

bulge12 = bulge12neu;

if j < n-2

zjp3neu = c*z(j+3) - s*bulge3;

bulge3neu = c*bulge3 + s*z(j+3);

z(j+3) = zjp3neu;

bulge3 = bulge3neu;

end

S(1:sn,[j+2 n+j+2]) = S(1:sn,[j+2 n+j+2])*[c -s; s c];

end

%

% Givens elimination to delete bulge in (n+j+1,n+j),

%

[c,s] = givens(z(j+1),-bulge10);

c2 = c*c;

s2 = s*s;

cs = c*s;

djp1neu = (c2-s2)*d(j+1) + cs*(v(j+1)+b(j+1));

vjp1neu = c2*v(j+1) - 2*cs*d(j+1) - s2*b(j+1);

bjp1neu = c2*b(j+1) - 2*cs*d(j+1) - s2*v(j+1);

zjp1neu = c*z(j+1) - s*bulge10;

bulge4neu = c*bulge4 - s*bulge12;

bulge12neu = c*bulge12 + s*bulge4;

d(j+1) = djp1neu;

v(j+1) = vjp1neu;

b(j+1) = bjp1neu;

z(j+1) = zjp1neu;

bulge4 = bulge4neu;

bulge12 = bulge12neu;

if j < n-2

177

bulge2neu = c*bulge2 + s*bulge9;

bulge9neu = c*bulge9 - s*bulge2;

bulge2 = bulge2neu;

bulge9 = bulge9neu;

end

if j < n-1

zjp2neu = c*z(j+2) - s*bulge1;

bulge1neu = c*bulge1 + s*z(j+2);

z(j+2) = zjp2neu;

bulge1 = bulge1neu;

end

S(1:sn,[j+1 n+j+1]) = S(1:sn,[j+1 n+j+1])*[c -s; s c];

if j < n-2

%

% Givens elimination type II to delete bulge in (j+3,n+j),

%

[c,s] = givens(bulge7,bulge8);

c2 = c*c;

s2 = s*s;

cs = c*s;

djp2neu = c2*d(j+2) + cs*bulge3 + s2*d(j+3);

djp3neu = c2*d(j+3) - cs*bulge3 + s2*d(j+2);

vjp2neu = c2*v(j+2) + s2*v(j+3);

vjp3neu = c2*v(j+3) + s2*v(j+2);

bjp2neu = c2*b(j+2) + 2*cs*z(j+3) + s2*b(j+3);

bjp3neu = c2*b(j+3) - 2*cs*z(j+3) + s2*b(j+2);

zjp2neu = c*z(j+2) + s*bulge9;

zjp3neu = (c2-s2)*z(j+3) + cs*(b(j+3) -b(j+2));

bulge1neu = c*bulge1 + s*bulge2;

bulge2neu = c*bulge2 - s*bulge1;

bulge3neu = c2*bulge3 + cs*(d(j+3)-d(j+2));

bulge4neu = c*bulge4;

bulge5neu = -s*bulge4;

bulge6neu = cs*(v(j+3) -v(j+2));

bulge7neu = c*bulge7 + s*bulge8;

bulge9neu = c*bulge9 - s*z(j+2);

bulge10neu = c*bulge12;

bulge11neu = -s*bulge12;

bulge12neu = cs*(d(j+3)-d(j+2))-s^2*bulge3;

d(j+2) = djp2neu;

d(j+3) = djp3neu;

v(j+2) = vjp2neu;

v(j+3) = vjp3neu;

b(j+2) = bjp2neu;

b(j+3) = bjp3neu;

z(j+2) = zjp2neu;

z(j+3) = zjp3neu;

bulge1 = bulge1neu;

bulge2 = bulge2neu;

bulge3 = bulge3neu;

bulge4 = bulge4neu;

bulge5 = bulge5neu;

bulge6 = bulge6neu;

bulge7 = bulge7neu;

178

bulge9 = bulge9neu;

bulge10 = bulge10neu;

bulge11 = bulge11neu;

bulge12 = bulge12neu;

if j < n-3

zjp4neu = c*z(j+4);

bulgex = s*z(j+4);

z(j+4) = zjp4neu;

end

S(1:sn,[j+2 j+3]) = S(1:sn,[j+2 j+3])*[c -s; s c];

S(1:sn,[n+j+2 n+j+3]) = S(1:sn,[n+j+2 n+j+3])*[c -s; s c];

end

if j < n-1

%

% Givens elimination type II to delete bulge in (j+2,n+j),

%

[c,s] = givens(z(j+1),bulge7);

c2 = c*c;

s2 = s*s;

cs = c*s;

vjp1neu = c2*v(j+1) + 2*cs*bulge4 + s2*v(j+2);

vjp2neu = c2*v(j+2) - 2*cs*bulge4 + s2*v(j+1);

bjp1neu = c2*b(j+1) + 2*cs*z(j+2) + s2*b(j+2);

bjp2neu = c2*b(j+2) - 2*cs*z(j+2) + s2*b(j+1);

zjp1neu = c*z(j+1) + s*bulge7;

zjp2neu = (c2-s2)*z(j+2) + cs*(b(j+2) -b(j+1));

bulge2neu = c*bulge2 + s*bulge3;

bulge3neu = c*bulge3 - s*bulge2;

bulge4neu = (c2-s2)*bulge4 +cs*(v(j+2)-v(j+1));

v(j+1) = vjp1neu;

v(j+2) = vjp2neu;

b(j+1) = bjp1neu;

b(j+2) = bjp2neu;

z(j+1) = zjp1neu;

z(j+2) = zjp2neu;

bulge2 = bulge2neu;

bulge3 = bulge3neu;

bulge4 = bulge4neu;

if j < n-2

djp1neu = c2*d(j+1) + cs*(bulge1+bulge10) + s2*d(j+2);

djp2neu = c2*d(j+2) - cs*(bulge1+bulge10) + s2*d(j+1);

zjp3neu = c*z(j+3) - s*bulge9;

bulge1neu = c2*bulge1 + cs*(d(j+2)-d(j+1)) - s2*bulge10;

bulge5neu = c*bulge5 + s*bulge6;

bulge6neu = c*bulge6 - s*bulge5;

bulge7neu = c*bulge9 + s*z(j+3);

bulge10neu = c2*bulge10 + cs*(d(j+2)-d(j+1)) - s2*bulge1;

bulge11neu = c*bulge11 + s*bulge12;

bulge12neu = c*bulge12 - s*bulge11;

d(j+1) = djp1neu;

d(j+2) = djp2neu;

z(j+3) = zjp3neu;

bulge1 = bulge1neu;

bulge5 = bulge5neu;

179

bulge6 = bulge6neu;

bulge7 = bulge7neu;

bulge10 = bulge10neu;

bulge11 = bulge11neu;

bulge12 = bulge12neu;

else % j = n-2

djp1neu = c2*d(j+1) + cs*(bulge1+bulge12) + s2*d(j+2);

djp2neu = c2*d(j+2) - cs*(bulge1+bulge12) + s2*d(j+1);

bulge1neu = c2*bulge1 + cs*(d(j+2)-d(j+1)) - s2*bulge12;

bulge10neu = c2*bulge12 + cs*(d(j+2)-d(j+1)) - s2*bulge1;

d(j+1) = djp1neu;

d(j+2) = djp2neu;

bulge1 = bulge1neu;

bulge10 = bulge10neu;

end

if j < n-3

bulge8neu = s*bulgex;

bulge9neu = c*bulgex;

bulge8 = bulge8neu;

bulge9 = bulge9neu;

end

S(1:sn,[j+1 j+2]) = S(1:sn,[j+1 j+2])*[c -s; s c];

S(1:sn,[n+j+1 n+j+2]) = S(1:sn,[n+j+1 n+j+2])*[c -s; s c];

end

else

error = 1;

end

j = j + 1;

end

180

