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Most eigenvalue problems arising in practice are known tethéctured. Structure is often
introduced by discretization and linearization techngjbat may also be a consequence of
properties induced by the original problem. Preserving shiucture can help preserve phys-
ically relevant symmetries in the eigenvalues of the marid may improve the accuracy
and efficiency of an eigenvalue computation. The purposhistirief survey is to highlight
these facts for some common matrix structures. This ingludieatment of rather general
concepts such as structured condition numbers and baclexans as well as an overview of
algorithms and applications for several matrix classelsidicg symmetric, skew-symmetric,
persymmetric, block cyclic, Hamiltonian, symplectic amthogonal matrices.
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1 Introduction

This survey is concerned with computing eigenvalues, @geors and invariant subspaces
of a structured square matrik In the scope of this paper, anx n matrix A is considered to
bestructuredif its n? entries depend olessthann? parameters.

It usually takes a long process of simplifications, linegtitms and discretizations before
one comes up with the problem of computing the eigenvaluésvariant subspaces of a
matrix. These techniques typically lead to highly struetbmatrix representations, which,
for example, may contain redundancy or inherit some phypicperties from the original
problem. As a simple example, let us consider a quadratengegjue problem of the form

(NI, + \C' + K)z = 0, (1)

whereC € R™*" is skew-symmetric@ = —C7T), K € R™*" is symmetric { = K7),
andI, denotes the: x n identity matrix. Eigenvalue problems of this type aris@,. gfrom
gyroscopic systems [96, 117] or Maxwell equations [108ythave the physically relevant
property that all eigenvalues appear in quadruphes-\, X, —\}, i.e., the spectrum is sym-
metric with respect to the real and imaginary axes. Linadion turns (1) into a matrix
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Fig. 1 Eigenvalues () and approximate eigenvalues<{) computed by a standard Arnoldi method
(left picture) and by a structure-preserving Arnoldi metifoght picture).

eigenvalue problem, e.g., the eigenvalues of (1) can bensutdrom the eigenvalues of the
matrix

C iCQ—K} @

1
—| "2
A‘{ I, —-3C

This 2n x 2n matrix is structured, itdn? entries depend only on the’ entries necessary to
defineC and K. The matrixA has the particular property that it is-samiltonianmatrix, i.e.,
A is a two-by-two block matrix of the form

[B CT’V} G=G", Q=QT, B,G,QeR™".

Q -B

ConsideringA to be Hamiltonian does not capture all the structure prasefibut it captures
an essential part: The spectrumasfy Hamiltonian matrix is symmetric with respect to the
real and and imaginary axes. Hence, numerical methodsakedthis structure into account
are capable to preserve the eigenvalue pairings of thenatigigenvalue problem (1), despite
the presence of roundoff and other approximation errors.

Figure 1, which displays the eigenvalues of a quadraticeigiee problem (1) stemming
from a discretized Maxwell equation [108], illustratesstfact. The exact eigenvalues are rep-
resented by grey dots in each plot,; one can clearly seedeewlue pairing \, —\, A, —\},
for complex eigenvalues with nonzero real part gad—\} for real and purely imaginary
eigenvalues. Eigenvalue approximations (denoted by ldezdses) have been computed with
two different types of Arnoldi methods (a standard apprdachomputing approximations to
some eigenvalues of large sparse matrices): in the plotolethhand side the eigenvalue ap-
proximations were obtained from a few iterations of the d@sad Arnoldi method [51] while
the ones in the plot on the right hand side were obtained frensame number of iterations
of an Arnoldi method that takes Hamiltonian structures atoount, see [96] and Section 3.7.
It is particularly remarkable that the latter method praekinot only pairs of eigenvalue ap-
proximations, but also purely imaginary approximationptioely imaginary eigenvalues.

Besides the preservation of such eigenvalue symmetrie® Hre several other benefits to
be gained from using structure-preserving algorithms &c@lof general-purpose algorithms
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for computing eigenvalues. These benefits include reduaegbatational time and improved
eigenvalue/eigenvector accuracy.

This paper is organized as follows. In Section 2, we will preseveral general concepts
related to (structured) eigenvalue problems. To be moreifipeSection 2.1 provides a sum-
mary of common algorithms for solving eigenvalue problerhdi@vSection 2.2 discusses the
efficiency gains to be expected from exploiting structurect®ns 2.3 and 2.4 are concerned
with (structured) backward stability and condition nunsdxoth concepts are closely related
to the accuracy of eigenvalues in finite-precision ariticn&ection 3 treats several classes of
matrices individually: symmetric, skew-symmetric, pemsyetric, block cyclic, Hamiltonian,
orthogonal, and others. This treatment includes a briefwo@e of existing algorithms and
applications for each of these structures.

1.1 Preliminaries

Theeigenvaluesf a real or complex x n matrix A are the roots of its characteristic polyno-
mial det(A — AI). Since the degree of the characteristic polynomial equgtlse dimension

of A, it hasn roots, soA hasn eigenvalues. The eigenvalues may be real or complex, even
if A is real (in that case, complex eigenvalues appear in gaira}. The set of all eigen-
values will be denoted bj(A4). A nonzero vector: € C™ is called an(right) eigenvector

of A if it satisfiesAz = Az for someX € A(A). A nonzero vectoy € C" is called a

left eigenvectoif it satisfiesy” A = Ay, wherey” denotes the Hermitian transposeyof
Spaces spanned by eigenvectors remain invariant undeiptiaition by A, in the sense that
span{ Az} = span{Az} C span{z}. This concept generalizes to higher-dimensional spaces.
A linear subspac&” c C™ with Az € X for all x € X is called annvariant subspacef A.

If n > 4 there is no general closed formula for the roots of a polymbmiterms of its
coefficients, and therefore one has to resort to a numedchhique in order to compute the
roots by successive approximation. A further difficultyhiatthe roots may be very sensitive
to small changes in the coefficients of the polynomial, ardgtfect of rounding errors in the
construction of the characteristic polynomial is usualiyastrophic (see Section 2.1 for an
example). Numerically more reliable methods are obtaimechfthe following observation.
Eigenvalues and invariant subspaces can be easily obtlnoradhe Schur decompositioof
A: There is always a unitary matriX (U#U = UUH = I such that

T =U"AU

is upper triangular, that i$;; = 0 for i > j. As A(A) equals\(T'), the eigenvalues ol can
be read off from the diagonal entries Bf Moreover, if we partitiol/ = [X, X, |, where
X € C™** for somel < k < n, then we may rewrite the relatiohl/ = TU as

T Tio

AX, X1] = [X, X1] [ S,

] , Ty € CHE Ty, e CnmRx(n=h) - (3)
This shows thatdX = XTj, i.e., the columns of form an orthonormal basis for the
invariant subspac&’ belonging toA(771). Bases for invariant subspaces belonging to other
eigenvalues can be obtained by changing the order of thenagees on the diagonal of
T [51].

In case the matrid is real, one would like to restrict the equivalence transfation which
reveals the eigenvalues and corresponding invariant sgbspo a real transformation. Als
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may have complex eigenvalues, a reduction to the abovedimted Schur form is no longer
possible. We must lower our expectations and be contenthdtbalculation of an alternative
decomposition known as threal Schur decompositionThere always exists an orthogonal
matrix Q (Q7Q = QQT = I) such thaQ” AQ = Ty is upper quasi-triangular, that i85, is
block upper triangular with eithdr x 1 or 2 x 2 diagonal blocks. Each x 2 diagonal block
corresponds to a pair of complex conjugate eigenvalues.

2 General Concepts

In this section, we briefly summarize some general concefased to general and structured
eigenvalue computations.

2.1 Algorithms

Algorithms for solving structured eigenvalue problems @fiten extensions or special cases
of existing algorithms for solving the general, unstruetleigenvalue problem. One can
roughly divide these algorithms into direct methods anchttee methods.

Direct methodsaim at computingall eigenvalues and (optionally) eigenvectors/invariant
subspaces of a matri. The most widely used direct method for general nonsymmets-
trices is theQR algorithm[51]. This algorithm, which is behind the MLAB [93] command
ei g, computes a sequence of matrix decompositions convergiagomplete Schur form of
A by implicitly applying a QR decomposition in each iteratidacobi-like methodgl5, 112]
apply a sweep of elementary transformations, such as Gie¢attons, in each iteration. They
are well-suited for parallel computation but their slowegef convergence makes them often
inferior to the QR algorithm unless there is some speciatstire inA, e.g.,A is symmetric
or close to being upper triangular. Moreover, Jacobi’'s m@ttan sometimes compute tiny
eigenvalues much more accurately than other methods [41].

Iterative methodaim at computing aelected satf eigenvalues and (optionally) the eigen-
vectors/invariant subspaces belonging to these eigeewalthe most widely known iterative
method is probably thpower method51]. Starting from some random vector one con-
structs a sequenag Av, A%v, A3v, ... by repeated matrix-vector multiplication. This se-
guence converges to an eigenvector belonging to the doteiganvalue (i.e., the eigenvalue
of largest magnitude), provided that there is only one sugérnwalue. Besides being inca-
pable of obtaining several eigenvalues or eigenvectaeqdlver method may also suffer from
very slow convergence in the presence of several nearlyrmmheigenvalues. To find other
eigenvalues and eigenvectors, the power method can bedpp(id — o1)~! for some shift
o, an algorithm calledhverse iteration The largest eigenvalue ¢t — o1)~tis1/(\; — o)
where),; is the closest eigenvalue dfto o, so that one can choose which eigenvalues to find
by choosing.

The Arnoldi method5, 51] achieves faster convergence by considering not thdylast
iterate of the power method but the whole space spanned pyegilous iterates, the so called
Krylov subspacéCy (A, v) := span{v, Av, ..., A*¥~1v}. Using Krylov subspaces also gives
the flexibility to approximate several eigenvalues and gsoaiated invariant subspaces. The
increased memory requirements of the Arnoldi method camiiteld by employing restarting
strategies, see, e.g., [110]. This leads to the implicébtarted Arnoldi algorithm [85] (IRA),
which forms the basis of MrLAB’s ei gs.
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Fig. 2 Computed roots () of the polynomial(A — 1)(A — 2) - - - (A — 25), after its coefficients have
been stored in double-precision.

A different class of iterative methods is obtained by apmyilewton’s methotb a system
of nonlinear equations satisfied by an eigenvalue/eigéavpair (\, z). One such system is
given by

wlr —1

Fna) = { Ar — A } —0,

wherew is a suitably chosen vector. It turns out that Newton’s metoplied to this system
is equivalent to inverse iteration, see also [95] for moritke The Jacobi-Davidson method
(see the review in the present volume of this journal or [B]L3 a closely related Newton-
like method, but so far little is known about adapting thistineel to structured eigenvalue
problems. There are other functiofishat may be used, but not all of them lead to practically
useful methods for computing eigenvalues. For examplegysgi\) = det(Al — A) by ex-
plicitely constructing the coefficients of the polynomiéh) is generallynotadvisable. Often,
already storing these coefficients in finite-precisionhamittic leads to an unacceptably high
error in the eigenvalues; leave alone any other roundadiémplied by the typically wildly
varying magnitudes. Figure 2, which goes back to an exampWitkinson [134], illustrates
this effect. However, it should be mentioned that iterathethods based gi(\) are suitable
for some classes of matrices such as tridiagonal matriceégrbat care in representipg))
must be taken, see [13] and the references therein.

2.2 Efficiency

Direct methods generally requitg(n?) computational time to compute the eigenvalues of a
general x n matrix. The fact that a structured matrix depends on less tRgparameters
gives rise to the hope that an algorithm taking advantag&eftructure may require less
effort than a general-purpose algorithm. For example, tReaf@orithm applied to a symmet-
ric matrix requires roughly0% of the floating point operations (flops) required by the same
algorithm applied to a general matrix [51]. For other stmues, such as skew-Hamiltonian
and Hamiltonian matrices, this figure can be less dramalicN®reover, in view of recent
progress made in improving the performance of generalgaeplgorithms [21, 22], it may
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6 H. Fassbender and D. Kressner: Structured Eigenvaludepneb

require considerable implementation efforts to turn teduction of flops into an actual re-
duction of computational time.

The convergence of an iterative method strongly dependseprbperties of the matrix
and the subset of eigenvalues to be computed, which makee#dued computational effort
rather difficult to predict. For example, methods based oyld&rsubspaces require in each
iteration a matrix-vector multiplication, which can takp to 2n? flops. This figure may
reduce significantly for a structured matui% e.g., to roughly twice the number of nonzero
entries for sparse matrices. Some structures, such as3&aviltonian and persymmetric
matrices [96, 125], induce some additional structure indtydov subspace making it possible
to reduce the computational effort even further.

2.3 Backward error and backward stability

Any numerical method for computing eigenvalues is affedtgdound-off errors due to the
limitations of finite-precision arithmetic. Already regenting the entries of a matrit in
double-precision generally causes a relative error of abou'®. Unless some further in-
formation is available, the best we can therefore expech foor numerical method is that
it computes theexacteigenvalues of a slightlperturbedmatrix A + E, where|| E||r (the
Frobenius norm of) is not much greater that0—1¢ x || A||». A numerical method satis-
fying this property is called (numericalljgackward stable Methods known to be backward
stable include the QR algorithm, most Jacobi-like methtius power method, the Arnoldi
method, IRA, and many of the better Newton-like methods.

A simple way to check backward stability is to compute thédesl » = Ai — Az of a
computed eigenvalue/eigenvector p@ir ) with |||, = 1. Then(}, &) is an exact eigenpair
of the perturbed matrixl — 2 and the backward error is consequently given|by || » =
|r||2. If only X is available then a suitable backward error is giverrhy, (A — AI), which
coincides with th&-norm of the smallest perturbatidghsuch thaf\ is an eigenvalue afi+ E.
(Here,omin denotes the smallest singular value of a matrix.)

The notion ofstructured backward erronot only requireg ., #) to be an exact eigenpair
of A + E but also requiregl + E to stay within the considered class of structured matrices.
For example, if4 is symmetric then a suitable symmetfids given byE = —(r&7 + &rT —
(rT#)z2T). Since||r|l2 < ||E|l2 < ||r]l2/v/2, this implies that the structured backward error
with respect to symmetric matrices is rather close to thedsted backward error. This is not
for all structures the case, see [116] for more details. Ddjpg on the point of view, the
problem of finding the structured backward error can alsceganded as a structured inverse
eigenvalue problem [36] or computing the smallest streatigingular value [66, 73].

A numerical method is callestrongly backward stabli# the computed eigenpairs satisfy
small structured backward errors [24]. Strong backwarldil#aimplies backward stability,
but the converse is generally not true.

2.4 Condition numbers and pseudospectra

Knowing that a computed eigenvalue satisfies a small (stred) backward error does not
necessarily admit conclusions about the accuracy of theswalue. This also depends on the
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Fig. 3 Unstructured pseudospectra of the mattiin (6) for different perturbation levels.

eigenvalue condition numbex\), which is formally defined as follows:
1 <
Kk(A) = 1inr(1) B sup{|A = A|: E € C"" ||E|2 < ¢}, 4)
E—

where)\ is the eigenvalue of the perturbed matrix+ E closest toX. In other words()\)
measures the worst-case first order influence of a pertorb&ton the accuracy of. If k()
is large, then\ is said to be ill-conditioned. Eigenvalues with small cdiwai number are said
to be well-conditioned.

The definition (4) readily implies\ — A| < k()| E|l2. Thus, a backward stable method
attains high accuracy for fairly well-conditioned eigelues. If A is a simple eigenvalue,
i.e., A is a simple root ofdet(A] — A), thenx(\) = 1/|y x| with 2 andy being right
and left eigenvectors belonging fonormalized such thatz||s = |ly|lz = 1 [61]. For
any normal matrixV (that is N¥ N = NNH) there exists a unitary matrig such that
QTNQ = diag\, ..., \,) is diagonal. HenceNg; = \jg; andg;’ N = ¢l');. Its every
right eigenvector is also a left eigenvector belonging togame eigenvalue arg\) = 1 for
all its eigenvalues. Hence, eigenvalues of normal matacesvell-conditioned.

Pseudospectra provide more detailed information on thebehof eigenvalues under
perturbations [118]. For a given perturbation lewet 0, the pseudospectru. (A) of A is
the union of the eigenvalues of all perturbed matrides E with || E||; < e:

Ac(A) = J{AA+E): E€C™ ™ |[E|2 <e}. (5)

Figure 3 displays pseudospectra for the matrix
2 1 2
A= -1 2 2 |. (6)
0 00

Provided that all eigenvalues are simple, the pseudospeatpproaches, astends to zero,
discs around the eigenvalues and the radii of these distkedibye coincide with the corre-
sponding eigenvalue condition numbers, see, e.g., [73].
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Fig. 4 Real pseudospectra of the matrxin (6) for different perturbation levels

This is no longer true if we only admit structured perturbasi in (5), i.e., matrice& that
belong to a certain matrix classruct. The correspondingtructured pseudospectrufijt™<t
may approach completely different geometrical shapesq8p,For example, if we allow for
real perturbations only, thestruct = R™*". A]}f”" is known to approach ellipses. This is
demonstrated in Figure 4 (a line can be regarded as a de¢ghethpse). The larger half
diameters of these ellipses divided byield the structured eigenvalue condition numbers
formally defined as

1 o
KN = lim — sup{|A — \| : E € struct, | E||2 < }. (7)
e—0 g

Itturns out thak®" ™" (\) > k(\)/v/2, see [30]. Since™t(\) < k() holds for anystruct,
this implies that there is no significant difference betwe&n™" (\) andx()\). Surprisingly,
the same statement holds for a variety of other structu&$f, 74, 107], see also Section 3.
Note that (7) impliegA — A| < x5™<t(\)||E|| for all E € struct. Explicit expressions for
KSTUt(\) have been derived in [64], provided thatuct is a linear matrix space.

Defining an appropriate condition numbgrt’) for an invariant subspac¥ of A is more
complicated due to the fact that we have to work with subspacel rely on a meaning-
ful notion of distances between subspaces. Such a notiomigded by the canonical an-
gles [111, 113] and the resulting X’) can be interpreted as follows. Let the columnsXof
form an orthonormal basis fo¥. Then there is a matriX such that the columns ot form
a basis for an invariant subspateof the slightly perturbed matrix -+ F and

IX = Xllr £ w(X)|El|r

for all E € C™*"™. A (possibly smaller)st™<t(X) is similarly defined and yields the same
bound for all E' restricted tostruct. Structured condition numbers for eigenvectors and in-
variant subspaces have been studied in [31, 64, 68, 77, 4R, THe (structured) perturbation
analysis of quadratic matrix equations is a closely relaegh, which is comprehensively
treated in [76, 115].
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3 More on Some Structures

In this section, we aim to provide a brief discussion on getk@spects of some common
matrix structures.

3.1 Sparsity and related structures

Sparsity is probably the most ubiquitous structure in (nuicad linear algebra. While a
sparse matrix cannot be expected to have any particulameigiee or eigenvector properties,
it always admits the efficient calculation of its eigenval@nd eigenvectors [5], see also
Section 2.2.

In [101], it was shown that Btruct denotes all matrices having an assigned sparsity pattern
then the corresponding structured eigenvalue conditiomoar equald (y2 ™) |spruce || 7/ |y 2],
where(yz?) | means the restriction of the rank-one matix? to the sparsity structure
of struct. For example if the perturbation is upper triangular tiign®)|sc: is the upper
triangular part ofyz .

No methods are known to be strongly backward stable for aitramp sparsity structure
struct. Hence, it is generally difficult to achieve accuracy gairanised by a small value of

H(?JxHNstructHF-

3.2 Symmetric matrices

Probably the two most fundamental properties of a symmeetaitix A € R"*", A = AT are
that every eigenvalue is real and every right eigenvectatsig a left eigenvector belonging
to the same eigenvalue. Both facts immediately follow frdva bbservation that a Schur
decomposition ofd always takes the for@” AQ = diag(\1, ..., \,).

Itis simple to show that the structured eigenvalue and iamasubspace condition numbers
are equal to the corresponding unstructured condition musali.e. x¥™™(\) = k(A) =1
and

1
min{|p— Al : A€ Ay, p € Ay}’

KYM(X) = k(X) =

whereX is a simple invariant subspace belonging to an eigenvalbsest; C A(A), and
Ay = A(A)\A;. Moreover, many numerical methods, such as QR, Arnoldi awdhi-
Davidson, automatically preserve symmetric matrices aadgt@ongly backward stable.
These facts should not lead to the wrong conclusion that tesepvation of symmetric
matrices is not important. Algorithms tailored to symmetnatrices (e.g., divide and conquer
or Lanczos methods) take much less computational efforsanetimes achieve high relative
accuracy in the eigenvalues [41] and — having the right sepriation ofA at hand — even in
the eigenvectors [43, 44]. To illustrate these accuracygydét us consider 20 x 20 matrix
A = DHD with

1 01 -+ 01

, D =diag(10%°,10'%, ... 10"). (8)
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QR algorithm " Jacobi algorithm
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Fig.5 Relative errorsA— )|/ for the eigenvalues of the matrix = D H D as defined in (8) computed
by the QR algorithm and by the Jacobi algorithm.

From Figure 5 it can be concluded that the Jacobi algorithmmgdes all eigenvalues of
with high relative accuracy while the QR algorithm fails th&ve this goal.

Besides the well-known algorithms for symmetric eigenpeots such as the QR algo-
rithm, the Lanczos algorithm (a Krylov subspace methodted for symmetric matrices)
and the Jacobi method, which are discussed in most basiskmokumerical methods (see,
e.g., [61, 131, 40]), there are a number of more recent deredats. For example, a divide-
and-conquer algorithm was first introduced in 1981 [39]glige subtle implementation was
only discovered ten years later [58]. The algorithm is ong¢hef fastest now available for
computing all eigenvalues and all eigenvectors. Biseati@mm be used to find just a subset
of the eigenvalues of a symmetric tridiagonal matrix, elgpse in the intervak, b]. If only
k < n eigenvalues are required, bisection can be much fasterQRennverse iteration can
then be used to independently compute the correspondirgwegtors. The numerical diffi-
culties associated with that approach have recently bévessfd2, 43, 44]. Of course, there
a symmetric version of the Jacobi-Davidson algorithm (beer¢view in the present volume
of this journal or [5, 109]).

An overview of all developments related to symmetric eigdne problems is far beyond
the scope of this survey; we refer to [37, 40, 103] for intrctins to this flourishing branch
of eigenvalue computation.

3.3 Skew-symmetric matrices

Any eigenvalue of a skew-symmetric matrik € R"*", A = — AT is purely imaginary.

If n is odd then there is at least one zero eigenvalue. As for syrimmeatrices, any right

eigenvector is also a left eigenvector belonging to the saigenvalue (this is true for any
normal matrix). The real Schur form of takes the form

QTAQ = [ 7?11 o ]@---@[Zk “ ]@0@---@0.

for some real scalars, , . .., ax # 0.
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While the structured condition number for a nonzero eigkrealways satisfies™¥ (\) =
x(A\) = 1, we have for a simple zero eigenvakfé" (0) = 0 butx(0) = 1[107]. Again, there
is nothing to be gained for an invariant subspatet is simple to showske" (X) = k(X).

Skew-symmetric matrices have received much less attetian symmetric matrices,
probably due to the fact that skew-symmetry plays a lessitapbrole in applications. Again,
the QR and the Arnoldi algorithm automatically preservenskgmmetric matrices. Variants
of the QR algorithm tailored to skew-symmetric matricesehbeen discussed in [72, 128].
Jacobi-like algorithms for skew-symmetric matrices artteotLie algebras have been devel-
oped and analyzed in [59, 60, 61, 75, 102, 106, 133].

3.4 Persymmetric matrices

A real 2n x 2n matrix A is calledpersymmetridf it is symmetric with respect to the anti-
diagonal. E.g.A takes the following form fon = 2:

a1l aiz | a1z G4
A= Ga21 (22 | A23 (13
azyp ai2 | a2 @12
G41 @31 | A21 @11

If we additionallyassumeA to besymmetricthen we can write

A— { An Aio }
AL, F,ALF, |’

whereF,, denotes the: x n flip matrix, i.e., F,, has ones on the anti-diagonal and zeros every-
where else. Note th& is also acentrosymmetrienatrix sinceA = Fy,, AFy,. A practically
relevant example of such a matrix is the Gramian of a set gtieacy exponentialge***+*},
which plays a role in the control of mechanical and electifizations [105]. Employing the

orthogonal matriX/ = — [7} }ﬂ we have

A — ApF, 0

T _
UTAU = [ 0 F,AnF, + F,A12 |’ ®)

where we used the symmetry df;; and the persymmetry ofl;». This is a popular trick
when dealing with centrosymmetric matrices [132]. (A samibut technically slightly more
complicated trick can be usedAf has odd dimension.) Thus,

MA) = MA11 — A12F,) UN(A11 + A Ey,).

Perhaps more importantly, if these two eigenvalue sets igjeimt then any eigenvector be-
longing toA(A411 — A12F,) takes the form

o3[ 4]

for somez € R™. This property ofr is sometimes called center-skew-symmetry. Analo-
gously, any eigenvector belonging0A;; + A2 F,) is center-symmetric. While the struc-
tured and unstructured eigenvalue condition numbers fomsgtric persymmetric matrices
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12 H. Fassbender and D. Kressner: Structured Eigenvaluzdpne

are the same [74, 107], there can be a significant differenitesiinvariant subspace condition
numbers. With respect to structured perturbations, tharséipn between\(A4;; — Ao F},)
and \(A11 + A12F,), which can be arbitrarily small, does not play any role forairant
subspaces belonging to eigenvalues from one of the two @fisnsets [31]. It can thus be
important to retain the symmetry structure of the eigerwesadn finite-precision arithmetic.
Krylov subspace methods achieve this goal automaticallydfstarting vector is chosen to
be center-symmetric (or center-skew-symmetric). Thigpprty has been used in [125] to
construct a structure-preserving Lanczos process. Hffialgorithms for performing matrix-
vector products with centrosymmetric matrices have beesstigated in [48, 97, 100].

We now briefly consider persymmetri@ndskew-symmetrimatrix A,

A= Ay Ao
— | AL F,ATFE, |-

Again, the orthogonal matri can be used to reduce
T ATT 0 A Fy + Arp
UAU{FW%_A?2 0 .

Hence, the eigenvalues df are the positive and negative square roots of the eigerwalue
the matrix productAq; F, + A12)(F, A1 — AL,), see also [105].

Structure-preserving Jacobi algorithms for symmetricspemetric and skew-symmetric
persymmetric matrices have been recently developed in [90]

3.5 Product eigenvalue problems and block cyclic matrices

The task of computing the eigenvalues of a matrix produsearfrom various applications in
systems and control theory, see, e.g., [7, 23, 89, 123]. Mamr it has been recently shown
that many structured eigenvalue problems can be viewedrisidar instances of the product
eigenvalue problem [130].

For simplicity, let us consider computing the eigenvalueamn x n product of three
matrices only:II = ABC. At first sight, such an eigenvalue problem does not match the
definition of a structured eigenvalue problem stated in thgirming of this surveyiI is an
n x n matrix but depends on thgn? entries defining its factorsl, B, C. However, any
product eigenvalue problem can be equivalently seen as hedaed block cyclic structured
eigenvalue problem:

0 0 C
A= B 0 0
0 A O

The fact that4? is a block diagonal matrix with diagonal entriésAB, BC A, ABC im-
plies that) is an eigenvalue ofd if and only if A3 is an eigenvalue ofABC' (which has
the same eigenvalues 654 B and BC A). Also, any invariant subspace efBC can be
related to an invariant subspace4f[87]. This connection admits the application of struc-
tured perturbation results to obtain factor-wise perttidmeresults for the product eigenvalue
problem [11, 35, 81, 86].
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The essential key to develop numerically stable algoritfonsolving a product eigen-
value problem is to avoid the explicit computation of the mixgproduct. The periodic QR
algorithm [17, 63, 119] is a strongly backward stable metfowdtomputing eigenvalues and
invariant subspaces of, which in turn implies factor-wise backward stability fasraputing
eigenvalues and invariant subspaceHofn [78], it has been shown numerically equivalent to
the standard QR algorithm applied to a permuted versiod.dflethods for solving product
eigenvalue problems with large and (possibly) sparse factan be found in [80, 88]. Using
these methods instead of applying a standard methat aften results in higher accuracy
for the computed eigenvalues, especially for those of smafnitude. This well-appreciated
advantage has driven the development of many reliable ithhgos for solving instances of
the product eigenvalue problem, such as the Golub-Reirigohittam for the singular value
decomposition [50] or the QZ algorithm for the generalizegavalue problem [99].

3.6 Orthogonal matrices

All the eigenvalues of a real orthogonal matfidie on the unit circle. Moreover, as orthogo-
nality implies normality, any right eigenvector is also # &genvector belonging to the same
eigenvalue. Orthogonal eigenvalue problems have a nunfltagpdications in digital signal
processing, see [1, 2] for an overview.

The set of orthogonal matricesth = {A : AT A = I'} forms a smooth manifold, and the
tangent space a@frth at A is given by{ AH : H € skew}. By the results in [74] this implies

M\ = sup{|zTAHz|: H € skew, |AH||, = 1}
= SUP{|$HH$| : H € skew, ||H||2 = 1}.

Hence, ifA\ = £1 thenz can be chosen to be real which implie§Hz = 0 for all z and
consequently:°t"(\) = 0, provided that\ is simple. Similarly, if\ is complex, we have
KOM(\) = k(\) = 1 and henceSt™(\) = 1. A more general perturbation analysis of
orthogonal and unitary eigenvalue problems, based on tlggegZ&ansform, can be found
in [16].

Once again, the QR algorithm automatically preserves gahal matrices. To make it
work (efficiently), it is important to take the fact that thederlying matrix is orthogonal
into account. A careful choice of shifts can lead to cubicvemgence or even ensure global
convergence [46, 126, 127]. Even better, an orthogonalr{itary) Hessenberg matrix can be
represented b§)(n) so calledSchur parameterfs2, 27]. This makes it possible to implement
the QR algorithm very efficiently [53]; for an extension toitany and orthogonal matrix
pairs, see [25]. In [54], a divide and conquer approach falamynHessenberg matrices was
proposed, based on the methodology of Cuppen'’s divide amguss approach for symmetric
tridiagonal matrices [38]. Krylov subspace methods fohogonal and unitary matrices have
been developed and analyzed in [15, 26, 62, 70, 71].

3.7 Hamiltonian matrices

As already mentioned in the introduction, one of the mostamdable properties of a Hamil-
tonian matrix
H_|:Q AT:|7 G_Ga Q_Qa
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is that its eigenvalues always occur in pafrs, —A}, if A € R U R, or in quadruples
A, =X\ A=A}, if A € C\(R UR). Hamiltonian matrices arise in applications related to
linear control theory for continuous-time systems [6] anddyatic eigenvalue problems [96,
117], to name only a few. Deciding whether a certain Hamiiormatrix has purely imagi-
nary eigenvalues is the most critical step in algorithmsfamputing the stability radius of a
matrix or theH, norm of a linear time-invariant system, see, e.g., [20, 29].

The described eigenvalue pairings often reflect importeopérties of the underlying ap-
plication and should thus be preserved in finite-precisiithmetic. QR-like algorithms that
achieve this goal have been developedin [10, 28, 120] whijéo subspace methods tailored
to Hamiltonian matrices can be found in [8, 9, 49, 96, 129]. efficient strongly backward
stable method for computing invariant subspaceH dfas recently been proposed in [34].

Concerning structured perturbation results for Hamikonmnatrices, see [31, 74, 77, 116]
and the references therein. It turns out that there is ndtte difference betweer(\) and
xkHamil(\), the (structured) eigenvalue condition numbers. Aig&;) andx"m!(X') are equall
for the important case that is the invariant subspace belonging to all eigenvaluesdmofien
left half plane.

There is much more to be said about Hamiltonian eigenvalolgl@ms, see [9] for a recent
survey.

3.8 Symplectic matrices

A matrix M is calledsymplectidff
MJIMT = J,

or equivalentlyM ™ JM = J, where

0o I

J= { ol } |
The symplectic matrices form a group under multiplicatidie eigenvalues of symplectic
matrices occur in reciprocal pairs: Xis an eigenvalue ol/ with right eigenvector:, then
A~1 is an eigenvalue of/ with left eigenvectorJz)T. The computation of eigenvalues
and eigenvectors of such matrices is an important task iticapions like the discrete linear-
guadratic regulator problem, discrete Kalman filtering, $blution of discrete-time algebraic
Riccati equations and certain large, sparse quadratioedige problems. See, e.g., [82, 84,
94, 96] for applications and further references. Symptatiatrices also occur when solving
linear Hamiltonian difference systems [14].

Note that a Calyley transform turns a symplectic matrix iatdamiltonian one and vice
versa. This explains the close resemblence of the specttarfitonian and symplectic ma-
trices. Moreover, every Hamiltonian matriX satisfiesH.J = (HJ)T. Unfortunately, the
Hamiltonian and the symplectic eigenproblems are (despitemon believe) quite different.
The symplectic eigenproblem is much more difficult than ttaeriiitonian one. The relation
between the two eigenproblems is best described by congpinivith the relation between
symmetric and orthogonal eigenproblems or the Hermitiahuanitary eigenproblems. In all
these cases, the underlying algebraic structures are ebralgnd a group acting on this alge-
bra. For the algebra (Hamiltonian, symmetric, Hermitiartrioas), the structure is explicit,
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i.e., can be read off the matrix by viewing it. In contrasg #tructure of a matrix contained in
a group (symplectic, orthogonal, unitary matrices) is giealy implicitly. It is very difficult

to make this structure explicit. If the “group” eigenproflés to be solved using a method that
exploits the given structure, than this is relatively eamydrthogonal or unitary matrices as
one works with the standard scalar product. Additionalditties for the symplectic problem
arise from the fact that one has to work with an indefinite irpreduct.

The described eigenvalue pairings often reflect importeopérties of the underlying ap-
plication and should thus be preserved in finite-precisiithmetic. QR-like algorithms that
achieve this goal have been developed as well as Krylov sulesmethods tailored to sym-
plectic matrices. An efficient strongly backward stable metfor computing invariant sub-
spaces of\f is not known so far. More on the algorithms and theoreticallts for symplectic
matrices are comprehensively summarized in [47].

Concerning structured perturbation results for symptettatrices, see [74, 116] and the
references therein. K is a simple eigenvalue fa¥/, then so isl /. It turns out that there is
no difference between(\) andx(1/)\), the unstructured eigenvalue condition numbers, but
the structured ones differ.

3.9 Other structures

Here, we shortly comment on other structured eigenvaluelgnas frequently encountered in
the literature. By no means should this list or the providddrences be regarded as complete.

Hankel and Toeplitz matrices: Toeplitz matrices have constant entries on each diagonal
parallel to the main diagonal; they belong to the largersctEfgpersymmetric matrices.
Toeplitz structure occur naturally in a variety of applioas; tridiagonal Toeplitz ma-
trices are commonly the result of discretizing differehéiguation problemsF,, T is a
Hankel matrix for each Toeplitz matrik and F;, as the Section 3.4. Hankel matrices
arise naturally in problems involving power moments. Thenkéd and Toeplitz struc-
ture is rich in special properties. Besides admitting tis& éamputation of matrix-vector
products [121], Hankel and Toeplitz matrices have a numbérteresting eigenvalue
properties, see [19] and the references therein.

Multivariate eigenvalue problems: These are multiparameter eigenvalue problems of the
form W;(\)z; = 0,fori = 1,...,k, z; € C*\{0}, A = (\1,...,\) € CFand
Wi(A) = Vip — me A;Vi; whereV;; € C™*™i A k-tuple A that satisfies the equa-
tion W;(\)z; = 0,fori = 1,...,k, is called an eigenvalue and the tensor product
r =x1®- - Q@ is the corresponding right eigenvector. Such eigenvaloklpms arise
in a variety of applications [4], particularly in mathengat physics when the method of
separation of variables is used to solve boundary valuel@mb[124]. The result of
the separation is a multiparameter system of ordinary rdifféal equations. The multi-
parameter eigenproblems can be considered as particsteubtured generalized eigen-
value problems [3]; see [67, 68, 104] for algorithms and yéition results based on
this connection.

Nonnegative matrices: A nonnegative matrix is a matrix whos e entries are all nonneg-
ative, a;; > 0 for all 4, j. These matrices provide a vast area of research because of
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strong links to Markov chains, graph clustering and othecpcally important applica-
tions [12]. See [83] and the references therein for strigetxploiting algorithms with

applications to computing Google’s PageRank. More on sirad perturbation results
can be found, e.g., in [33, 69, 98].

Polynomial eigenvalue problems:In a matrix polynomial eigenvalue probleine C and
r € C"is sought such thai(\)z = (Mo + AM; + ... + \*My)x = 0 with coeffi-
cient matrices\/; € C**", j = 0,..., k. A standard approach in order to solve such
eigenvalue problems is the use of linearization. Any lifesdion of a matrix polynomial
gives rise to a structured eigenvalue problems [92]. Sepff®%3 survey of theoretical
and algorithmic work on how to exploit the structure of suictearizations and further
structure induced by the coefficients of the matrix polyraimi

Palindromic eigenvalue problems: A matrix polynomialp(\) = My+AM;+. . .+\*M;,
with coefficient matrices\/; € C**", j = 0,...,k is called palindromic ifp(\) =
Ne(pA=INT = MM + Ne=IMT + o4+ AME | + M. This class of structured
generalized eigenvalue problems has recently been igatst [65, 91].

Hierarchical matrices: The sign function iteration preserves such matrices andbean
used to compute spectral projectors and invariant subspecg efficiently [56, 57].

Semi-separable matrices:Developing efficient and structure-preserving algoritfionsemi-
separable and related matrices has recently become arm diefid of research, see,
e.g., [32, 122]. Little is known on structured perturbatiesults.

4 Conclusions and Outlook

In this paper, we have summarized some of the existing krdyel®n structured eigenvalue
problems. It turns out that quite often the structure of abfmm is reflected in the eigen-
values, e.g., eigenvalues appearing in pairs or quadruflseig standard eigensolvers the
special structures of these problems are neglected, aftatirlg to unstructured rounding
errors which destroy the eigenvalue pairings. Structuesgrving algorithms prohibit this
effect. Moreover, such methods can reduce computatianaldnd improve upon eigenvalue
accuracy.

A number of matrix eigenvalue problems arise from the disra#on and linearization of
nonlinear infinite-dimensional eigenvalue problems. Simmes an unfortunate choice of the
discretization and/or linearization hides relevant dtrtees of the problem. In such cases, it is
worthwhile to reconsider the original problem trying to tae these structures.

Recent improvements of the QR algorithm (e.g., aggressivlg deflation [22]) may be
extended to structured algorithms, but little work has taba@me in this direction so far. A com-
monly underappreciated aspect is the development of pylaii@ilable software for struc-
tured eigenvalue problems.
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