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Abstract— Nowadays, modeling dynamical systems often  Most approaches for model reduction of LTI systems are
yields state-space models of very high order (th_at is, 10,000 or pased on the idea of projecting the original systEnonto
more equations). In order to guarantee a numerical simulation a system of lower order. Usually, two realx ¢ matrices

in reasonable time, the dynamical system is reduced to one of . T . .
the same form which allows simulation of and control-design V and W with WV = I are computed which define the

for the reduced-order state-space model in much less computing Projector IT = VW™, The projection of the states of the
time. Usually one would like to obtain a reduced-order system original system generates a reduced-order model:

that has the same properties as the original system. In this ~ T ~ T ~ ~

paper, we will consider stable and passive systems. Antoulas A=W AV, B=W"'B, C=CV, D=D. (3)

suggests in [1] an approach based on positive real interpolation .
which is modified by Sorensen [36]. The algorithm is based upon For a recent survey of methods for computing reduced-order

interpolation at selected spectral zeros of the original transfer Models see [_2], (9l _[16]- _
function to produce a reduced-order transfer function that has Here we will consider only stable and passive systéms

the specified roots as its spectral zeros. These interpolation A system is stable, if the matrid is stable, that is, if all
conditions are satisfied through the computation of a basis for eigenvalues of4 lie in the open left half plane. A system

a selected invariant subspace of a Hamiltonian matrix which has i ive if it d not generate anv enerav internall nd
the spectral zeros as its spectrum. Here we propose to employ S passive oes not generale any energy internally, a

a structure-preserving Lanczos algorithm for this part of the ~ Strictly passive, if it consumes or dissipates input enefgy
computation in order to make use of the underlying structure  classical result [37] says that a passive system is positive

and physical properties of the problem. real. For the LTI systems considered here this implies that
the corresponding transfer functiati(s) = D + C(sI —
A)~1B is positive real, that is¢(s) is analytic andG(s) +

This paper is concerned with linear time invariant (LTI)(G(s))* > 0 for Re(s) > 0 (see, e.g., [5] and the references
systems therein). When reducing a stable and passive system, it is

o B important to produce a reduced-order model that preserves

2o () = Ae(t) + Bu(t), y(t) = Ca(t)+Du(t), (1) e important system properties and response charaiterist
where A € R"*™ B € R"*P O € RPX" D ¢ Rp¥p, |n Such as stability and passivity while at the same time using
this setting,u is the input or excitation functiony is the & computationally efficient method.
state, and the functioffi(z, u) = Az(t) + Bu(t) determines ~ Passive systems arise in a variety of control problems for
the dynamics of the syster. y is the output or set of mechanical, mechatronic and micro-electro-mechanicsd sy
observations and(z,u) = Cz(t) + Du(t) describes the t€ms, see [27]. Circuit simulation is another importantrseu
way that the observations are deduces from the state and fifenodel reduction problems. In some of these applications,
input. The complexity of is defined as the number of states8-9-» in the simulation of RLC circuits, the systéinis stable

n. The problem we will address is to approximatewith and passive. A number of methods previously proposed for
another dynamical system solving the problem considered here is based on the moment

R . R R R R matching property of Krylov subspace methods. For a recent
Yo z(t) = Az(t) + Bu(t), 9(t) = CZ(t)+ Du(t), (2) survey of such methods see [16].
~ ~ ~ ~ For simplicity, let us assume for a moment that= 1;
yvh_ereA € R™, B € R"7,C € R, D € R, That i.e., the system (1) is a single-input single-output sysaeich
IS, In the new syst_e m the r?“mber of states (the number ﬂfe transfer functions of the systems (1) and (2) are scalar
first order differential equations to be solved) is much Iesisational functions. In particular, the transfer functicancbe
than in the original systemé < n. System properties of '

expanded around any for which (soI — A)~! exists,
the original system such as stability, passivity, conatality P 8o (50 )
or observability should be preserved by a model reduction - - ok
procedure. Often, the existence of a global error bound is Gls) = kz_omk(s s0)"- )
required and a small approximation error in terms|9f- || B
for an appropriate norm is desired.

I. INTRODUCTION

Here, them,;, are called moments of the transfer function. A
Pack approximation of7 is a functionF', whose expansion
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As the transfer functions of (1) and (2) are rational funasio [20], Balanced-Truncation-Approximation (BTA) [31] and
the transfer function of the reduced system (2) can be wiritteSingular-Perturbation-Approximation (SPA) [30]. A merit

as of these control-theoretic approaches is the availabdity
G(s)=D+C(sI —A)"'B = Pe-1(s) 7 approximation errors and the superior global accuracys&he
Ye(s) schemes are, however, expensive to employ due to the need

where¢,_, and+, are polynomials of degree at mast-1, of solving large-size matrix equations and factorizations
and/, resp.. The two polynomials are uniquely defined byA recent review of such methods can be found in [24].
its 2¢ coefficients. Pagl methods try to determine thesePassivity preserving balancing methods are described in,
coefficients such that as many leading moments of both trarg-g, [22], [32], [11], [34]. Other approaches for passivity
fer functions are identical as possible. Numerically stablpreserving model reduction are the LR-ADI method [29] and
methods for the computation of such approximations relthe Laguerre-SVD ansatz [25], [26].

on the Lanczos algorithm [21] and achieve the matching of Based on recent work by Antoulas [1] characterizing
the first2¢ leading moments of both transfer functions. Thepassivity through interpolation conditions, Sorenserivesr
most prominent method for achieving this in the general case [36] a novel projection method that preserves both stgbil
is the Paé-via-Lanczos method (PVL) [14]. Closely relatedand passivity. Giver2¢ distinct pointssi, ..., s, let T; =

is the Multipoint-Rational-Interpolation method (MRI)3R  s;/ — A and

both these methods do not automatically preserve stability ~ = 1

and passivity. K = [I'B, ..., T, B], (®)
Large linear RLC models allow a symmetric formulation W = [T,;TlCT, e T;,CTCT}. (6)

of the system with a symmetric transfer function. Based —

on the symmetric Lanczos algorithm, the method SyPVIASsuming thadet W'V # 0, the projected system defined

is proposed in [18] for such special systems. This methdd (3) whereV =V and W = W(VTW)~!, interpolates

guarantees to preserve stability and passivity for specifle transfer function of at the points;; (see [1, Proposition

models, like RC-, RL- or LC-networks. The rational transfer-1]): R

function is approximated by a rational function such that G(si) = G(si), i=12,...,20

the first 2¢ moments are matched. At the same time, th . . . . L

dominant poles of the transfer function are captured. Esntoulas proves in [1], that if the interpolation points in

(

. o ) ), (6) are chosen as spectral zeros of the original passive
variant for multi-input multi-output systems, called SyMP = e .
[19], was also proposed. If the nonsymmetric versions o%yStemE’ the reduced system defined by (3) is both stable

these methods are used to reduce stable and passive mocflﬁrl]éj passive. The matricds, 1" can be obtained without

there is no guarantee that the reduced systems will €’ explicit computation of spectral zeros. As Sorensen

stable or passive. An iterative process as described in [ 6] noted, this can be achieved through the computation

is necessary in order to ensure stability and passivity ef thY certain invariant subspaces of a generalized eigenvalue

reduced system. problem. . I .
PRIMA [33] approximates the rational transfer function of In Section Il we will briefly review the results by Antoulas

. . . 1] and Sorensen [36] and state the passivity preserving
the original system (1) by a rational transfer function SuCI[rWnodeI reduction method proposed by Sorensen. In Section

that only half as many moments of both transfer function ;
: . | we show how the approach can be rewritten such that
match compared to the previously described methods. The . .
. T structured eigenvalue problem results and describe an
unused degrees of freedom in the approximation are used 1Q.” . X
icient, structure-preserving Krylov subspace method fo

generate a passive reduced-order model for a passive R . ) X
S solution. Section IV reports a numerical example com-

network. This method is based on the Arnoldi aIgoritth| ; ) . .
[21]. In (3), V = W is chosen and the projection matrix paring Sorensen’s method with the structure-preservirgy on
y ’ roposed here.

V is computed as a special basis of a certain block KryIO\)Q
subspace. The reduced-order model depends on the network ||. SORENSENS PASSIVITY PRESERVING MODEL
formulation. The idea of not matching the maximal number REDUCTION METHOD
of possible moments of the transfer functions is also used in . L
[3] in order to obtain a passivity preserving model reduttio Let us consider the LTI system (1) where it is assumed
method for single-input single-output systems. SPRIM [17ﬁhat
is a modification of PRIMA which makes use of the special 1) A is stable,
structure of the matrices induced through the RLC structure 2) X is observable and controllable,
The mentioned schemes are computationally efficient, but3) D+ = D + D is symmetric positive definite,
suffer from the fact that they can be used only for special 4) X is passive.
cases and from the lack of global error bounds. Recall, that a real rational functio@(s) is positive real if
Another class of model reduction methods, which we(s) is analytic andG(s) + (G(—s))T > 0 for Re(s) > 0.
will not describe in detail as they are quite different fromThe last property implies the existence of a stable ratio-
the approach considered below, stems from control theomyal matrix function W (s) such thatG(s) + GT(—s) =
Examples of these are Hankel-Norm-Approximation (HNAW (s)W T (—s). This is the spectral factorization @f, W



is called a spectral factor off and the zeros o#V, i.e., Let QT = [XT YT ZT] be partitioned in accordance
Xi,i = 1,...,n, such thatdet W();) = 0, are called the with the block structure of4; X € R"** Y € R"* 7 ¢
spectral zeros of7; these definitions and relations can beRP*¢, Then

found in many papers and texts, see e.g. [39], [5]. Denote A B X X
the set of all spectral zeros &, i.e., _AT (T vi=|v |g 8)
S = {)\det W(\) =0} = {spectral zeros of’}. ¢ BT Dy Z 0

Suppose a reduced-order modA?el(Z) has been obtained The desired projection matricd$ and W can be computed
and letG(s) = D+C(sI—A)~'B be the associated transferfrom X andY" in the following way: compute the singular
function. Antoulas notes in [1] that a passive reduced-orde@lue decomposition [21] of
model ¥ will result if certain of the spectral zeros are xTy = Q,82Q7
preserved in the reduced-order model. * v’

Proposition: If Sz C Sg, G(A) = G(\) for all A € Sz, where@, and@, are orthogonal matrices iR“** and .52 €
and G is a minimal degree rational interpolant of the valuesR*** is a diagonal matrix with nonnegative diagonal entries.

of G on the setSg, thens is both stable and passive. Set
_ —1 _ -1
The setSq of all spectral zeros is equal to the set of V=XQ.57, W=YQ,5,
(finite) eigenvalues of and
A B I n T B T A 3
A=W "Av, B=W'B, C=CV, D=D.
A— )X = AT 0T | =) 1 , (D) ’ ’ ’
c BT D, 0 The resulting reduced-order system is stable and pasgje [3
- For small to medium size dense problems and £
that isS¢g = & here
is8a = o(A E)\{oc} w can be actually formed and the desired generalized Schur
(A, &) = {N € Cldet(A - \E) = 0}. decomposition can be obtained from the full one. For large

1 gparse systems this would be impractical and inefficient. An

compute the reduced-order model through the constructidi¢rative method computing a desired set of eigenvalues and
of a basis for a selected invariant subspace of the(pif). associated eigenvectors (or an associated invariant acdsp

His observation is based on the following result where wi$ More appropriate. As the best currently available method
recall that a quasi-triangular matrix is a triangular matri OF this purpose, the implicitly restarted Arnoldi (IRA)gal-

which can have additional nonzero entries on the first lowdfthm [35] as implemented in MrLAB’s ei gs or ARPACK
subdiagonal, i.e4;. 1 ; # 0 for some non-neighbouring in Fortran [28] can not deal with the problem under consid-

Proposition 2: (Generalized Schur decomposition [21]) f €ration here (a$ is not positivg definite), Sorenlsen suggests
M and N are in C**", then there exist unitary matricds  t© @PPly a Cayley transformatia®), = (u€ —A)™" (1€ +A)

and Q in C**" such thatU " MQ = T and U NQ = S W_hereu >0isa rgal shift. With a proper cho_lce of this

are upper triangular. If, for somek, ty, = s = O, will prowde_for rapid convergence to an invariant subspace
theno(M, N) = C. Otherwise,o(M, N) = {t;;/si;, si; # corresponding to the transformed eigenvalues of largest

0} U {oo for s;; = 0}. U and Q can be chosen so that Magnitude of

the eigenvalues appear in any order along the diagonal of (n€ — A (pE+ AQ = QR, 9)

SandT. If M and N are real, then there exist orthogonal

matricesU/ andQ in R"*" such that/” M Q is upper quasi- SO that

triangular andU” NQ is upper triangular. Similar as before, AQ = EQR where R :— #(ﬁ _ I)(1§+ ' (10)

the eigenvalues ofM, N) can be read off. ' '

Standard software for computing this computation (e.gAn implementation will require two sparse direct factoriza

MATLAB's ei g) exists. tions of A— pI and A+ . The Cayley transformation may
Suppose we have computed a partial real generalizéisen be applied to an arbitrary vector using a blocked matrix

Schur decomposition ofA, £), that is, we have computed vector product followed by a Gaussian block elimination.

matricesU and @ in R(?»*P)x¢ with orthonormal columns Moreover, it should be noted that as the partial Schur

such thatU? AQ = S is an upper quasi-triangular matrix in decomposition will automatically keep complex conjugate

R>* andUTEQ = T is an upper triangular matrix iR*¢  pairs of eigenvalues together, the paraméténat specifies

such that all eigenvalues @f5,T") have positive real part. the order of the reduced system will perhaps need to be

ThenT is nonsingular and we have from@ = US,£Q =  adjusted by 1 to accommodate this.

UT that€QT~! = U and
» [1l. STRUCTUREDKRYLOV SUBSPACEAPPROACH
AQ=EQT 5 = EQR It is easily seen that\ € Sg implies —\ € Sg
where@ has orthonormal columng)X’' Q = I) andR is real since from Au = A&u we haveu’ A = —\u’€&, where
quasi-upper triangular ilR“** such that Re\) > 0 for all  uT = [27,yT, 27] andu® = [y, —2T, 2T]. As Hamiltonian
eigenvalues\ of R. matrices display such an eigenvalue pairing, in this sectio

Making use of this observation, Sorensen suggests in [36



we will show how to transform the generalized eigenvalu@hese problems can be dealt with if a special structure-
problem A — \¢ associated with the generalized Schupreserving method is employed which preserves the Hamilto-
decomposition (8) into a standard eigenvalue problem for @an structure in every single computational step. For Hami
Hamiltonian matrix. Further it is discussed how the specidgbnian eigenvalue problems of small to medium size, special
structure of Hamiltonian matrices can be used here to solgtructure-preserving algorithms such as the Hamiltoisiah

the model reduction problem more efficiently. algorithm [12], [13], or the methods described in [10], [8]
From (8) we obtain [2] can be used. For higher dimensional problems the symplectic
Lanczos method for Hamiltonian matrices [6], a structure-
AX+BZ = XR, (11)  preserving Krylov subspace method, is suitable.
ATy —Cc"Z = YR, (12) For simplicity, let us assume that = 1; the system
CX+B'Y+D,Z = 0. (13) (1) is a single-input single-output system. The standard

Lanczos method for nonsymmetric matrices generates in
From (13) it follows thatZ = —D;'{CX + BTY}, as a suitable way matrice§’ = [v1,vy,...,v/] and W =

D, = D+ DT is symmetric positive definite (assumption 3[w;, ws, . .., w,] which form the basis of the Krylov sub-
in Section Il). Substituting this expression far into (11), spaces
(12) yields
A-BD;'C _BD'BT X1 1%, K¢ H,z) = sparz, Hz,H?z, ..., H 2}
c'ni'c —(A-cDi'B)T Y | | Y | = spafvi,va, ..., v},
Y KeH",y}y = sparly, H"y,(H")?y,...,(H")" 'y}
= spadwi,wa,...,we},

‘H can be represented as

A G with WTV = I. Short recurrences for computing and W
H = O —AT (14)  columnwise can be given. In particular, it holds that
with G = GT and Q = QT. Obviously, all eigenvalues HV = VT, +req,
of H are eigenvalues of the paft4, £). Hence, instead of HIW = WTL + seel,

considering the partial generalized Schur decomposition

AQ = EQR wherer, ands, are certain vectors of length e, denotes the
N ¢th unit vector andl; is a nonsymmetric tridiagonal matrix

we can consider the partial Schur decompositiori-of

ar M
HS = SA, (15)

T, = B1 oo

whereS € R?"*¢ and A € R**. —
_Each matrix with a block structure liké( in (14) with Bs
G =GT andQ = Q7 is called a Hamiltonian matrix.
Hamiltonian matrices have a number of interesting proeerti
which allow for efficient, numerically robust methods foeth
computation of their eigenvalues. ¥ is a real or a purely .
imaginary eigenvalue of a real Hamiltonian matrix, theh preserV|r_1g. - .
is also an eigenvalue. Complex eigenvalues even appear inlmposmg thg add|t|o!1aITreqU|rement that the mairbhas
quadruples\, —\, X, —x. (This property of the eigenvalues ©© be symplectic, that isy"JV' = J for
of H holds also for the finite eigenvalues (@4, £) and hence
for the spectral zero§.) J= [ 0 I ] ’

Standard methods for solving eigenvalue problems do not -1 0
preserve the Hamiltonian form of the matrix in the course
of the computation (usually already the first computationsnd making use of the Hamiltonian structure7ef one can
steps in such an algorithm will destroy the Hamiltoniarshow that there is no need to computé explicitly (this
structure). Due to unavoidable rounding errors these nasthoProperty is valid for a broader class of matrices, see [15]).
will in general not compute exact pairs or quadruples ofhus work and storage can essentially be halved here. In
eigenvalues, in particular eigenvalues on the imaginaiy axparticular, a symplectien x 2¢ matrix V' is computed whose
might move into the open right or left half plane. Moreovercolumns are a symplectic basis fif,(H, Ve1). A short
the convergence of some of the standard methods migfifcurrence for computing” columnwise can be given:
be slowed down as they often converge to the eigenvalue _
of largest modulus first, but there might be four of them. HV = VH + roedy, (16)

Ye—1
Qy

for certain scalarsy;, 3;,v;. Ty is certainly not a Hamilto-
nian matrix. The standard Lanczos method is not structure-
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vy —02 The second approach works with the Hamiltonian matrix
‘H (14). A desired set of eigenvalues and appropriate invarian
5 subspaces (15) are computed via the structure-preserving
L Ve —oc symplectic Lanczos algorithm and the reduced system is

for certain real scalar§;, 3;, v;, ¢;. A detailed description of computed as described in Section Ill. In order to achieve
the symplectic Lanczos method for Hamiltonian matrices cafast convergence, the use of a shift is recommended, but
be found in [6]. The partial Schur decomposition (15) can beimply shifting H by a shift 7 yields a non-Hamiltonian
obtained from (16) by computing the Schur decompositiomatrix H — 7Z. For 7 € R or 7 € iR, the matrix
of H using a structure-preserving algorithm like t® H(H — 7I1)"*(H + 7I)~! is Hamiltonian (this shifting
algorithm [13]. For details of the entire process see [7]strategy reflects the Hamiltonian spectrum). Moreover, if
Having computed (15), the model reduction can be carrieghly one shift is used, only a certain part of the spectrum
out as explained. is approximated. But, as the overall approach is based on
Using this structured approach, we not only save abointerpolation it seems reasonable to use interpolationtpoi
half of the computational effort compared to the standarttom different parts of the spectrum in order to achievedrett
approach; this approach offers a fast, efficient and more relccuracy. In the numerical test based on the Hamiltonian
able computation of the reduced-order model. Unfortugatelmatrix, referred to as the Hamiltonian approach in the seque
as for all model reduction methods based on Krylov subspateo shifts ¢ = 1, » = 6) have been used.
methods, there does not exist a global error bound. The invariant subspaces computed determine the choice
of the spectral zeros to be interpolated. Fig. 2 displays the
spectral zeros of the transfer function of the original eyst
For the preliminary numerical experiment presented in thig the right half plane (please note that a mirror set of spéct
section, we consider the RLC ladder network of [24]. Thigeros can be found in the left half plane) and the spectral
circuit consists 0f200 sections interconnected in cascadeyergs chosen by each of the two approaches.
each section is as shown in Fig. 1. The input is the voltage Fig. 3 compares the original system with both reduced
V applied to the first section; the output is the currenf the  gpeg, Fig. 4 displays the error system. Clearly, the Hamilto

first section. The order of the overall systemnis= 400. It nian approach results in a much better approximation.
is assumed that the states are scaled so that all capasitance
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