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Abstract— Nowadays, modeling dynamical systems often
yields state-space models of very high order (that is, 10,000 or
more equations). In order to guarantee a numerical simulation
in reasonable time, the dynamical system is reduced to one of
the same form which allows simulation of and control-design
for the reduced-order state-space model in much less computing
time. Usually one would like to obtain a reduced-order system
that has the same properties as the original system. In this
paper, we will consider stable and passive systems. Antoulas
suggests in [1] an approach based on positive real interpolation
which is modified by Sorensen [36]. The algorithm is based upon
interpolation at selected spectral zeros of the original transfer
function to produce a reduced-order transfer function that has
the specified roots as its spectral zeros. These interpolation
conditions are satisfied through the computation of a basis for
a selected invariant subspace of a Hamiltonian matrix which has
the spectral zeros as its spectrum. Here we propose to employ
a structure-preserving Lanczos algorithm for this part of the
computation in order to make use of the underlying structure
and physical properties of the problem.

I. I NTRODUCTION

This paper is concerned with linear time invariant (LTI)
systems

Σ : ẋ(t) = Ax(t)+Bu(t), y(t) = Cx(t)+Du(t), (1)

where A ∈ R
n×n, B ∈ R

n×p, C ∈ R
p×n,D ∈ R

p×p. In
this setting,u is the input or excitation function,x is the
state, and the functionf(x, u) = Ax(t) + Bu(t) determines
the dynamics of the systemΣ. y is the output or set of
observations andh(x, u) = Cx(t) + Du(t) describes the
way that the observations are deduces from the state and the
input. The complexity ofΣ is defined as the number of states
n. The problem we will address is to approximateΣ with
another dynamical system

Σ̂ : ˙̂x(t) = Âx̂(t)+ B̂u(t), ŷ(t) = Ĉx̂(t)+D̂u(t), (2)

where Â ∈ R
ℓ×ℓ, B̂ ∈ R

ℓ×p, Ĉ ∈ R
p×ℓ, D̂ ∈ R

p×p. That
is, in the new system the number of states (the number of
first order differential equations to be solved) is much less
than in the original system:ℓ ≪ n. System properties of
the original system such as stability, passivity, controllability
or observability should be preserved by a model reduction
procedure. Often, the existence of a global error bound is
required and a small approximation error in terms of||y− ŷ||
for an appropriate norm is desired.
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Most approaches for model reduction of LTI systems are
based on the idea of projecting the original systemΣ onto
a system of lower order. Usually, two realn × ℓ matrices
V and W with WT V = I are computed which define the
projector Π = V WT . The projection of the states of the
original system generates a reduced-order model:

Â = WT AV, B̂ = WT B, Ĉ = CV, D̂ = D. (3)

For a recent survey of methods for computing reduced-order
models see [2], [9], [16].

Here we will consider only stable and passive systemsΣ.
A system is stable, if the matrixA is stable, that is, if all
eigenvalues ofA lie in the open left half plane. A system
is passive if it does not generate any energy internally, and
strictly passive, if it consumes or dissipates input energy. A
classical result [37] says that a passive system is positive
real. For the LTI systems considered here this implies that
the corresponding transfer functionG(s) = D + C(sI −
A)−1B is positive real, that is,G(s) is analytic andG(s) +
(G(s))H ≥ 0 for Re(s) > 0 (see, e.g., [5] and the references
therein). When reducing a stable and passive system, it is
important to produce a reduced-order model that preserves
the important system properties and response characteristics
such as stability and passivity while at the same time using
a computationally efficient method.

Passive systems arise in a variety of control problems for
mechanical, mechatronic and micro-electro-mechanical sys-
tems, see [27]. Circuit simulation is another important source
of model reduction problems. In some of these applications,
e.g., in the simulation of RLC circuits, the systemΣ is stable
and passive. A number of methods previously proposed for
solving the problem considered here is based on the moment
matching property of Krylov subspace methods. For a recent
survey of such methods see [16].

For simplicity, let us assume for a moment thatp = 1;
i.e., the system (1) is a single-input single-output systemand
the transfer functions of the systems (1) and (2) are scalar
rational functions. In particular, the transfer function can be
expanded around anys0 for which (s0I − A)−1 exists,

G(s) =

∞∑

k=0

mk(s − s0)
k. (4)

Here, themk are called moments of the transfer function. A
Pad́e approximation ofG is a functionF , whose expansion
arounds0 matches as many moments of the expansion (4)
of G as possible

F (s) =

r∑

k=0

mk(s − s0)
k + higher order terms in(s − s0).



As the transfer functions of (1) and (2) are rational functions,
the transfer function of the reduced system (2) can be written
as

Ĝ(s) = D̂ + Ĉ(sI − Â)−1B̂ =
φℓ−1(s)

ψℓ(s)
,

whereφℓ−1 andψℓ are polynomials of degree at mostℓ−1,
and ℓ, resp.. The two polynomials are uniquely defined by
its 2ℓ coefficients. Pad́e methods try to determine these
coefficients such that as many leading moments of both trans-
fer functions are identical as possible. Numerically stable
methods for the computation of such approximations rely
on the Lanczos algorithm [21] and achieve the matching of
the first2ℓ leading moments of both transfer functions. The
most prominent method for achieving this in the general case
is the Pad́e-via-Lanczos method (PVL) [14]. Closely related
is the Multipoint-Rational-Interpolation method (MRI) [23],
both these methods do not automatically preserve stability
and passivity.

Large linear RLC models allow a symmetric formulation
of the system with a symmetric transfer function. Based
on the symmetric Lanczos algorithm, the method SyPVL
is proposed in [18] for such special systems. This method
guarantees to preserve stability and passivity for special
models, like RC-, RL- or LC-networks. The rational transfer
function is approximated by a rational function such that
the first 2ℓ moments are matched. At the same time, the
dominant poles of the transfer function are captured. A
variant for multi-input multi-output systems, called SyMPVL
[19], was also proposed. If the nonsymmetric versions of
these methods are used to reduce stable and passive models,
there is no guarantee that the reduced systems will be
stable or passive. An iterative process as described in [4]
is necessary in order to ensure stability and passivity of the
reduced system.

PRIMA [33] approximates the rational transfer function of
the original system (1) by a rational transfer function such
that only half as many moments of both transfer functions
match compared to the previously described methods. The
unused degrees of freedom in the approximation are used to
generate a passive reduced-order model for a passive RLC
network. This method is based on the Arnoldi algorithm
[21]. In (3), V = W is chosen and the projection matrix
V is computed as a special basis of a certain block Krylov-
subspace. The reduced-order model depends on the network
formulation. The idea of not matching the maximal number
of possible moments of the transfer functions is also used in
[3] in order to obtain a passivity preserving model reduction
method for single-input single-output systems. SPRIM [17]
is a modification of PRIMA which makes use of the special
structure of the matrices induced through the RLC structure.

The mentioned schemes are computationally efficient, but
suffer from the fact that they can be used only for special
cases and from the lack of global error bounds.

Another class of model reduction methods, which we
will not describe in detail as they are quite different from
the approach considered below, stems from control theory.
Examples of these are Hankel-Norm-Approximation (HNA)

[20], Balanced-Truncation-Approximation (BTA) [31] and
Singular-Perturbation-Approximation (SPA) [30]. A merit
of these control-theoretic approaches is the availabilityof
approximation errors and the superior global accuracy. These
schemes are, however, expensive to employ due to the need
of solving large-size matrix equations and factorizations.
A recent review of such methods can be found in [24].
Passivity preserving balancing methods are described in,
e.g, [22], [32], [11], [34]. Other approaches for passivity
preserving model reduction are the LR-ADI method [29] and
the Laguerre-SVD ansatz [25], [26].

Based on recent work by Antoulas [1] characterizing
passivity through interpolation conditions, Sorensen derives
in [36] a novel projection method that preserves both stability
and passivity. Given2ℓ distinct pointss1, . . . , s2ℓ, let Tj =
sjI − A and

Ṽ = [T−1
1 B, . . . , T−1

k B], (5)

W̃ = [T−T
k+1C

T , . . . , T−T
2k CT ]. (6)

Assuming thatdet W̃T Ṽ 6= 0, the projected system defined
by (3) whereV = Ṽ and W = W̃ (Ṽ T W̃ )−1, interpolates
the transfer function ofΣ at the pointssi (see [1, Proposition
4.1]):

Ĝ(si) = G(si), i = 1, 2, . . . , 2ℓ.

Antoulas proves in [1], that if the interpolation pointssj in
(5), (6) are chosen as spectral zeros of the original passive
systemΣ, the reduced system̂Σ defined by (3) is both stable
and passive. The matrices̃V , W̃ can be obtained without
the explicit computation of spectral zeros. As Sorensen
[36] noted, this can be achieved through the computation
of certain invariant subspaces of a generalized eigenvalue
problem.

In Section II we will briefly review the results by Antoulas
[1] and Sorensen [36] and state the passivity preserving
model reduction method proposed by Sorensen. In Section
III we show how the approach can be rewritten such that
a structured eigenvalue problem results and describe an
efficient, structure-preserving Krylov subspace method for
its solution. Section IV reports a numerical example com-
paring Sorensen’s method with the structure-preserving one
proposed here.

II. SORENSEN’ S PASSIVITY PRESERVING MODEL

REDUCTION METHOD

Let us consider the LTI system (1) where it is assumed
that

1) A is stable,
2) Σ is observable and controllable,
3) D+ = D + DT is symmetric positive definite,
4) Σ is passive.

Recall, that a real rational functionG(s) is positive real if
G(s) is analytic andG(s) + (G(−s))T ≥ 0 for Re(s) > 0.
The last property implies the existence of a stable ratio-
nal matrix function W (s) such thatG(s) + GT (−s) =
W (s)WT (−s). This is the spectral factorization ofG, W



is called a spectral factor ofG and the zeros ofW , i.e.,
λi, i = 1, . . . , n, such thatdet W (λi) = 0, are called the
spectral zeros ofG; these definitions and relations can be
found in many papers and texts, see e.g. [39], [5]. Denote
the set of all spectral zeros bySG, i.e.,

SG := {λ|det W (λ) = 0} = {spectral zeros ofG}.

Suppose a reduced-order modelΣ̂ (2) has been obtained
and letĜ(s) = D̂+Ĉ(sI−Â)−1B̂ be the associated transfer
function. Antoulas notes in [1] that a passive reduced-order
model Σ̂ will result if certain of the spectral zeros are
preserved in the reduced-order model.
Proposition: If S bG

⊂ SG, Ĝ(λ) = G(λ) for all λ ∈ S bG
,

and Ĝ is a minimal degree rational interpolant of the values
of G on the setS bG

, thenΣ̂ is both stable and passive.

The setSG of all spectral zeros is equal to the set of
(finite) eigenvalues of

A− λE =




A B
−AT −CT

C BT D+


 − λ




I
I

0


 , (7)

that isSG = σ(A, E)\{∞} where

σ(A, E) = {λ ∈ C|det(A− λE) = 0}.

Making use of this observation, Sorensen suggests in [36] to
compute the reduced-order model through the construction
of a basis for a selected invariant subspace of the pair(A, E).
His observation is based on the following result where we
recall that a quasi-triangular matrix is a triangular matrix
which can have additional nonzero entries on the first lower
subdiagonal, i.e.,ti+1,i 6= 0 for some non-neighbouringi.
Proposition 2: (Generalized Schur decomposition [21]) If
M and N are in C

n×n, then there exist unitary matricesU
and Q in C

n×n such thatUHMQ = T and UHNQ = S
are upper triangular. If, for somek, tkk = skk = 0,
then σ(M,N) = C. Otherwise,σ(M,N) = {tii/sii, sii 6=
0} ∪ {∞ for sii = 0}. U and Q can be chosen so that
the eigenvalues appear in any order along the diagonal of
S and T . If M and N are real, then there exist orthogonal
matricesU andQ in R

n×n such thatUT MQ is upper quasi-
triangular andUT NQ is upper triangular. Similar as before,
the eigenvalues of(M,N) can be read off.
Standard software for computing this computation (e.g.,
MATLAB ’s eig) exists.

Suppose we have computed a partial real generalized
Schur decomposition of(A, E), that is, we have computed
matricesU andQ in R

(2n+p)×ℓ with orthonormal columns
such thatUTAQ = S is an upper quasi-triangular matrix in
R

ℓ×ℓ andUTEQ = T is an upper triangular matrix inRℓ×ℓ

such that all eigenvalues of(S, T ) have positive real part.
ThenT is nonsingular and we have fromAQ = US, EQ =
UT that EQT−1 = U and

AQ = EQT−1S =: EQR

whereQ has orthonormal columns (QT Q = I) andR is real
quasi-upper triangular inRℓ×ℓ such that Re(λ) > 0 for all
eigenvaluesλ of R.

Let QT = [XT , Y T , ZT ] be partitioned in accordance
with the block structure ofA; X ∈ R

n×ℓ, Y ∈ R
n×ℓ, Z ∈

R
p×ℓ. Then




A B
−AT −CT

C BT D+







X
Y
Z


 =




X
Y
0


R. (8)

The desired projection matricesV andW can be computed
from X and Y in the following way: compute the singular
value decomposition [21] of

XT Y = QxS2QT
y ,

whereQx andQy are orthogonal matrices inRℓ×ℓ andS2 ∈
R

ℓ×ℓ is a diagonal matrix with nonnegative diagonal entries.
Set

V = XQxS−1, W = Y QyS−1,

and

Â = WT AV, B̂ = WT B, Ĉ = CV, D̂ = D.

The resulting reduced-order system is stable and passive [36].
For small to medium size dense problemsA and E

can be actually formed and the desired generalized Schur
decomposition can be obtained from the full one. For large
sparse systems this would be impractical and inefficient. An
iterative method computing a desired set of eigenvalues and
associated eigenvectors (or an associated invariant subspace)
is more appropriate. As the best currently available method
for this purpose, the implicitly restarted Arnoldi (IRA) algo-
rithm [35] as implemented in MATLAB ’s eigs or ARPACK
in Fortran [28] can not deal with the problem under consid-
eration here (asE is not positive definite), Sorensen suggests
to apply a Cayley transformationCµ = (µE−A)−1(µE+A)
whereµ ≥ 0 is a real shift. With a proper choice ofµ this
will provide for rapid convergence to an invariant subspace
corresponding to theℓ transformed eigenvalues of largest
magnitude of

(µE − A)−1(µE + A)Q = QR̂, (9)

so that

AQ = EQR where R := µ(R̂ − I)(R̂ + I)−1. (10)

An implementation will require two sparse direct factoriza-
tions ofA−µI andA+µI. The Cayley transformation may
then be applied to an arbitrary vector using a blocked matrix-
vector product followed by a Gaussian block elimination.
Moreover, it should be noted that as the partial Schur
decomposition will automatically keep complex conjugate
pairs of eigenvalues together, the parameterℓ that specifies
the order of the reduced system will perhaps need to be
adjusted by 1 to accommodate this.

III. STRUCTUREDKRYLOV SUBSPACEAPPROACH

It is easily seen thatλ ∈ SG implies −λ ∈ SG

since fromAu = λEu we have ũTA = −λũTE , where
uT = [xT , yT , zT ] andũT = [yT ,−xT , zT ]. As Hamiltonian
matrices display such an eigenvalue pairing, in this section



we will show how to transform the generalized eigenvalue
problem A − λE associated with the generalized Schur
decomposition (8) into a standard eigenvalue problem for a
Hamiltonian matrix. Further it is discussed how the special
structure of Hamiltonian matrices can be used here to solve
the model reduction problem more efficiently.

From (8) we obtain [2]

AX + BZ = XR, (11)

−AT Y − CT Z = Y R, (12)

CX + BT Y + D+Z = 0. (13)

From (13) it follows thatZ = −D−1
+ {CX + BT Y }, as

D+ = D +DT is symmetric positive definite (assumption 3
in Section II). Substituting this expression forZ into (11),
(12) yields
[

A − BD−1
+ C −BD−1

+ BT

CT D−1
+ C −(A − CD−1

+ B)T

]

︸ ︷︷ ︸
H

[
X
Y

]
=

[
X
Y

]
R.

H can be represented as

H =

[
Ã G̃

Q̃ −ÃT

]
(14)

with G̃ = G̃T and Q̃ = Q̃T . Obviously, all eigenvalues
of H are eigenvalues of the pair(A, E). Hence, instead of
considering the partial generalized Schur decomposition

AQ = EQR

we can consider the partial Schur decomposition ofH

HS = SΛ, (15)

whereS ∈ R
2n×ℓ andΛ ∈ R

ℓ×ℓ.
Each matrix with a block structure likeH in (14) with

G̃ = G̃T and Q̃ = Q̃T is called a Hamiltonian matrix.
Hamiltonian matrices have a number of interesting properties
which allow for efficient, numerically robust methods for the
computation of their eigenvalues. Ifλ is a real or a purely
imaginary eigenvalue of a real Hamiltonian matrix, then−λ
is also an eigenvalue. Complex eigenvalues even appear in
quadruplesλ,−λ, λ,−λ. (This property of the eigenvalues
of H holds also for the finite eigenvalues of(A, E) and hence
for the spectral zerosSG.)

Standard methods for solving eigenvalue problems do not
preserve the Hamiltonian form of the matrix in the course
of the computation (usually already the first computational
steps in such an algorithm will destroy the Hamiltonian
structure). Due to unavoidable rounding errors these methods
will in general not compute exact pairs or quadruples of
eigenvalues, in particular eigenvalues on the imaginary axis
might move into the open right or left half plane. Moreover,
the convergence of some of the standard methods might
be slowed down as they often converge to the eigenvalue
of largest modulus first, but there might be four of them.

These problems can be dealt with if a special structure-
preserving method is employed which preserves the Hamilto-
nian structure in every single computational step. For Hamil-
tonian eigenvalue problems of small to medium size, special
structure-preserving algorithms such as the HamiltonianSR
algorithm [12], [13], or the methods described in [10], [8]
can be used. For higher dimensional problems the symplectic
Lanczos method for Hamiltonian matrices [6], a structure-
preserving Krylov subspace method, is suitable.

For simplicity, let us assume thatp = 1; the system
(1) is a single-input single-output system. The standard
Lanczos method for nonsymmetric matrices generates in
a suitable way matricesV = [v1, v2, . . . , vℓ] and W =
[w1, w2, . . . , wℓ] which form the basis of the Krylov sub-
spaces

Kℓ(H, x) = span{x,Hx,H2x, . . . ,Hℓ−1x}

= span{v1, v2, . . . , vℓ},

Kℓ(H
T , y} = span{y,HT y, (HT )2y, . . . , (HT )ℓ−1y}

= span{w1, w2, . . . , wℓ},

with WT V = I. Short recurrences for computingV andW
columnwise can be given. In particular, it holds that

HV = V Tℓ + rℓe
T
ℓ ,

HT W = WTT
ℓ + sℓe

T
ℓ ,

whererℓ andsℓ are certain vectors of lengthℓ, eℓ denotes the
ℓth unit vector andTℓ is a nonsymmetric tridiagonal matrix

Tℓ =




α1 γ1

β1 α2
. . .

.. .
. . . γℓ−1

βℓ−1 αℓ




for certain scalarsαj , βj , γj . Tℓ is certainly not a Hamilto-
nian matrix. The standard Lanczos method is not structure-
preserving.

Imposing the additional requirement that the matrixV has
to be symplectic, that is,V T JV = J for

J =

[
0 I
−I 0

]
,

and making use of the Hamiltonian structure ofH, one can
show that there is no need to computeW explicitly (this
property is valid for a broader class of matrices, see [15]).
Thus work and storage can essentially be halved here. In
particular, a symplectic2n×2ℓ matrix V is computed whose
columns are a symplectic basis forK2ℓ(H, V e1). A short
recurrence for computingV columnwise can be given:

HV = V H̃ + r2ℓe
T
2ℓ, (16)



Fig. 1. One section of the circuit as in [24]

whereH̃ is a Hamiltonian matrix ofJ-Hessenberg form

H̃ =




δ1 β1 ζ2

δ2 ζ2 β2
.. .

.. .
. . .

.. . ζℓ

δℓ ζℓ βℓ

ν1 −δ1

ν2 −δ2

.. .
.. .

νℓ −δℓ




for certain real scalarsδj , βj , νj , ζj . A detailed description of
the symplectic Lanczos method for Hamiltonian matrices can
be found in [6]. The partial Schur decomposition (15) can be
obtained from (16) by computing the Schur decomposition
of H̃ using a structure-preserving algorithm like theSR
algorithm [13]. For details of the entire process see [7].
Having computed (15), the model reduction can be carried
out as explained.

Using this structured approach, we not only save about
half of the computational effort compared to the standard
approach; this approach offers a fast, efficient and more reli-
able computation of the reduced-order model. Unfortunately,
as for all model reduction methods based on Krylov subspace
methods, there does not exist a global error bound.

IV. N UMERICAL EXPERIMENT

For the preliminary numerical experiment presented in this
section, we consider the RLC ladder network of [24]. This
circuit consists of200 sections interconnected in cascade;
each section is as shown in Fig. 1. The input is the voltage
V applied to the first section; the output is the currentI of the
first section. The order of the overall system isn = 400. It
is assumed that the states are scaled so that all capacitances,
inductances and resistances have the value0.1, exceptR = 1.
The Hankel singular values of this system decay rapidly so
that one can expect a good approximation of the original
system by a reduced-order one.

We compare the two approaches described before. For the
first approach the matrix pencilA−λE (7) is set up. A shift
µ is chosen (hereµ = 5), the Cayley transformation (9)
is computed (actually, not the matrix itself, but an operator
that applies this matrix to a vector is set up) and MATLAB ’s
eigs is used to compute anℓ×ℓ matrixR and the associated
matrix Q as in (10). From this the reduced-order system is
computed as described in Section III. This approach will be
referred to in the sequel as the Cayley approach.
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Fig. 2. Choice of spectral zeros

The second approach works with the Hamiltonian matrix
H (14). A desired set of eigenvalues and appropriate invariant
subspaces (15) are computed via the structure-preserving
symplectic Lanczos algorithm and the reduced system is
computed as described in Section III. In order to achieve
fast convergence, the use of a shift is recommended, but
simply shifting H by a shift τ yields a non-Hamiltonian
matrix H − τI. For τ ∈ R or τ ∈ iR, the matrix
H(H − τI)−1(H + τI)−1 is Hamiltonian (this shifting
strategy reflects the Hamiltonian spectrum). Moreover, if
only one shift is used, only a certain part of the spectrum
is approximated. But, as the overall approach is based on
interpolation it seems reasonable to use interpolation points
from different parts of the spectrum in order to achieve better
accuracy. In the numerical test based on the Hamiltonian
matrix, referred to as the Hamiltonian approach in the sequel,
two shifts (τ1 = 1, τ2 = 6) have been used.

The invariant subspaces computed determine the choice
of the spectral zeros to be interpolated. Fig. 2 displays the
spectral zeros of the transfer function of the original system
in the right half plane (please note that a mirror set of spectral
zeros can be found in the left half plane) and the spectral
zeros chosen by each of the two approaches.

Fig. 3 compares the original system with both reduced
ones, Fig. 4 displays the error system. Clearly, the Hamilto-
nian approach results in a much better approximation.
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