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Abstract

A restarted symplectic Lanczos method for the Hamiltonian eigenvalue
problem is presented. The Lanczos vectors are constructed to form a symplectic
basis. Breakdowns and near-breakdowns are overcome by inexpensive implicit
restarts. The method is used to compute eigenvalues, eigenvectors and
invariant subspaces of large and sparse Hamiltonian matrices and low rank
approximations to the solution of continuous-time algebraic Riccati equations
with large and sparse coefficient matrices.
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1 Introduction

Many applications require the numerical solution of the real Hamiltonian eigenvalue
problem

(1) Hzx = \x
where

A G

n=|4 S

] c ]R2n><2n

is large and sparse and

A,G=G6T,Q=QT e RV

The eigenvalues of Hamiltonian matrices are used in algorithms to compute the
real and complex stability radius of matrices (see [12, 16]) and the H.,—norm of
transfer matrices (see [17]). In computational chemistry, the problem of finding some
eigenvalues of largest modulus and the corresponding eigenvectors of a Hamiltonian
matrix arises in linear response theory, see e.g. [39].
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The essential role of the continuous-time algebraic Riccati equation (CARE) in
control theory

(2) Q+ATX 4+ XA-XGX =0

and its connection to the Hamiltonian eigenproblem (1) is well known, see e.g.
[33, 35, 37] and the references given therein. The solution of CARE (2) with small and
dense coefficient matrices (say n < 100) has been the topic of numerous publications
during the last 30 years. Even for these problems a numerically sound method, i.e.,
a strongly backwards stable method in the sense of [5], is yet not known. Only a few
attempts have been made to solve (1) for large and sparse matrices, e.g. [29, 31, 43].
In order to reduce both computational cost and workspace, it is crucial to use the
Hamiltonian structure.
It is well-known that for each Hamiltonian matrix H, we have

(JHY = JH

where 0 g

3) =

and I, is the n x n identity matrix. The eigenvalues of a Hamiltonian matrix H occur
in pairs A\, —A and if they are complex with nonzero real part even in quadruples
M, =X\, =\ Symplectic matrices S are defined by the property STJS = J for
S € IR¥™*" (this property is also called .J-orthogonality). If H is Hamiltonian and S is
symplectic, then S™'H S is Hamiltonian. Thus a structure-preserving and numerically
stable algorithm for the eigenproblem (1) should consist only of orthogonal symplectic
similarity transformations. An algorithm with this property was proposed in [11] for
the case that rank G = 1 or rank () = 1. To the best of our knowledge, the only
exisiting algorithm for the general case satisfying this demand was proposed in [1].
But for growing dimension n, this method suffers from convergence problems. The
Lanczos method proposed here for the large scale problem exploits the structure of
the problem by weakening orthogonality to J-orthogonality. In exact arithmetic, the
method would compute a symplectic (nonorthogonal) matrix S and a Hamiltonian
J-Hessenberg matrix H such that

[ 61 B G 1
52 CQ ,32 CS
63 G
(4) E = S_IHS = 5” Cn ,Bn
141 _51
Uy _52
1%:] _63
L Vp _5n _

The reduction of Hamiltonian matrices to Hamiltonian .J-Hessenberg form serves
as initial step in the Hamiltonian SR algorithm proposed by Bunse—Gerstner and
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Mehrmann [9]. This algorithm is a QR-like method for the Hamiltonian eigenproblem
based on the SR decomposition. There, H is computed by an elimination process.
During this elimination process the use of very badly conditioned matrices can not
always be circumvented. It is shown that the reduction of a Hamiltonian matrix
to such a Hamiltonian J-Hessenberg form does not always exist. The existence of
this reduction and also the existence of a numerically stable method to compute this
reduction is strongly dependent on the first column of the transformation matrix that
carries out the reduction.

A few attempts have been made to create structure-preserving methods using
a symplectic Lanczos method. The symplectic Lanczos method proposed by Mei
[38] works with the squared Hamiltonian matrix and suffers from stability problems
as well as from breakdown. The structure-preserving symplectic Lanczos method
considered here creates a Hamiltonian J-Hessenberg matrix if no breakdowns or
near-breakdowns occur. FEigenvalue methods for such matrices and the application
to the solution of algebraic Riccati equations (2) are examined in [8, 9, 36, 37, 45].
In [23], Freund and Mehrmann present a symplectic look-ahead Lanczos algorithm
which overcomes breakdown by giving up the strict Hamiltonian J-Hessenberg form
(4). In this paper we combine the ideas of restarted Lanczos methods [13, 26, 46]
together with ideas to reflect the Hamiltonian structure and present a restarted
symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. Implicitly
restarted Lanczos methods typically have a higher numerical accuracy than explicit
restarts and moreover they are more economical to implement.

In Section 2 the implictly restarted Lanczos method for nonsymmetric matrices
is reviewed. Section 3 describes the symplectic Lanczos method for Hamiltonian
matrices. In order to preserve the Hamiltonian J-Hessenberg form obtained from the
symplectic Lanczos method, an SR decomposition has to be employed in an implicitly
restarted symplectic Lanczos method. Thus in Section 4 we briefly present those
details of the SR decomposition necessary for the restart. The implicitly restarted
symplectic Lanczos method itself is derived in Section 5. Numerical properties of
the proposed algorithm are discussed in Section 6. Section 7 gives a survey over
applications of the method and in Section 8, we present some numerical examples.

2 The Implicitly Restarted Lanczos Method

Given vy,w; € IR” and a nonsymmetric matrix A € IR"*", the standard nonsym-

metric Lanczos algorithm [34] produces matrices Py = [p1,...,px] € IR™F and
Qr = [q1,---,qx] € IR™* which satisfy the recursive identities
(5) AP, = PTy+ Bry1Deprcr
(6) ATQk = QkaT + 7k+1%+1€£-
The vector e is the kth unit vector and
QY
Tk — ﬁ2

ﬂ/c O
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is a truncated reduction of A. Generally, the elements 3; and ~; are chosen so
that |3;| = |v;] and QT P, = I, (bi-orthogonality). One pleasing result of this
bi-orthogonality condition is that multiplying (5) on the left by Q7 yields the
relationship Q;{AP;C =T;.

In theory, the three-term recurrences in (5) and (6) are sufficient to guarantee
QT P, = I,.. Yet in practice, it is known [40] that bi-orthogonality will in fact be lost
when at least one of the eigenvalues of Ty converges to an eigenvalue of A. (See also
[25] and the references therein.)

At each step of the nonsymmetric Lanczos tridiagonalization, an orthogonaliza-
tion is performed, which requires a division by the inner product of (multiples of) the
vectors produced at the previous step. Thus the algorithm suffers from breakdown
and instability if any of these inner products is zero or close to zero. It is known
[30] that vectors ¢; and p; exist so that the Lanczos process with these as starting
vectors does not encounter breakdown. However, determining these vectors requires
knowledge of the minimal polynomial of A. Further, there are no theoretical results
showing that p; and ¢; can be chosen such that small inner products can be avoided.
Thus, no algorithm for successfully choosing p; and ¢; at the start of the computation
yet exists.

It is possible to modify the Lanczos process so that it skips over exakt breakdowns.
A complete treatment of the modified Lanczos algorithm and its intimate connection
with orthogonal polynomials and Padé approximation was presented by Gutknecht
[27, 28]. Taylor [47] and Parlett, Taylor, and Liu [41] were the first to propose a look-
ahead Lanczos algorithm that skips over breakdowns and near-breakdowns. The price
paid is that the resulting matrix is no longer tridiagonal, but has a small bulge in the
tridiagonal form to mark each occurence of a (near) breakdown. Freund, Gutknecht,
and Nachtigal presented in [24] a look-ahead Lanczos code that can handle look-ahead
steps of any length.

A different approach to overcome breakdowns and near-breakdowns is to modify
the starting vectors by an implicitly restarted Lanczos process. Given that P, and
Qr from (5) and (6) are known, an implicit Lanczos restart computes the Lanczos
factorization

(7) Aﬁk = ﬁka + ?ke;{
(8) ATQr = QiT + Gef

which corresponds to the starting vectors
(9) Br=pp(A=plpr, @ = p(AT = pl)g

without explicitly restarting the Lanczos process with the vectors in (9). For a
detailed derivation see [26] and the related work in [13, 46].

In Section 5 we show how to use this approach to overcome (near) breakdown in
the symplectic Lanczos algorithm discussed in the next section. Another application
of the restart idea will be given in Section 7 where the symplectic Lanczos method is
used to find low-rank approximations to the solution of algebraic Riccati equations.
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3 A Symplectic Lanczos Method for Hamiltonian Matrices

In this section, we describe a symplectic Lanczos method to compute the reduced
Hamiltonian J-Hessenberg form (4) for a Hamiltonian matrix H similar to the one
proposed in [23]. The usual nonsymmetric Lanczos algorithm generates two sequences
of vectors. Due to the Hamiltonian structure of H it is easily seen that one of the
two sequences can be eliminated here and thus work and storage can essentially be
halved. (This property is valid for a broader class of matrices, see [22].)

In order to simplify the notation we use in the following a permuted version of H

and H. Let
Hp = PHPY, Hp=PHPT, Sp=PSP", Jp=PJPT
with the permutation matrix P = P™ where
P" =e1,€3,...,€m_1,€2,€4,...,6€2,] € R*"**.

If the dimension of P" is clear from the context, we leave off the superscript.
From ST.JS = J we obtain

© 0 1 -
-1 0
0 1
S};JPSPZJPZ -1 0
0 1
I -1 0]
while STTHS = H yields
[0 B |0 G |
141 —51 0 0
0 G |6 B2 | 0 (3
0 0 1) —62 0 0
. 0 G
(10) HPSPZSPHP:SP 0 0
0 G
10 0
0 (o |bn Ba
L 0 0 Un _671 J

The structure preserving Lanczos method generates a sequence of matrices
2k 2nx2k
Se' = [v,wy, v, w3, ..., vk, w| € R

satisfying -
(11) HpSE = SFHE + Cervegiegy
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where E]%k = PFI PR s a permuted 2k x 2k Hamiltonian J-Hessenberg matrix
H? of the form (10). The space spanned by the columns of S%* = P”TS]%kPk is
symplectic since S%kTJ}%S]%k = JE where piJipit = Jljg and J7 is a 2 x 2j matrix
of the form (3).

As this reduction is strongly dependent on the first column of the transformation
matrix that carries out the reduction, we must expect breakdown or near-breakdown
in the Lanczos process as they also occur in the reduction process to Hamiltonian
J-Hessenberg form, e.g., [9]. Assume that no such breakdowns occur, and let
Sp = [v1, w1, vy, Wa, ..., v, w,|. For a given vy, a Lanczos method constructs the
matrix Sp columnwise from the equations

HpSpej:Spﬁpej, j:1,2,... .

From this we obtain the algorithm given in Table 1.

Algorithm : Symplectic Lanczos method

Choose an initial vector 7, € IR*",%; # 0.
Set vy = 0 € IR*".
Set Cl = ||51||2 and v = Cl—lrl‘)'l
form=1,2,...do
(update of w,,)
set
Wy = Hpvy, — 6y U
Uy = 'UT:QJpHpvm
1 ~

W, = 5 W
m

(computation of £,,)
/Bm — —’LU;Z;JPHP'UJm

(update of v,,41)

i\)J'm—l—l = HP‘wm - Cmvm—l - ﬁmvm + 6mwm

Cmt1 = [[Om4]]2
Um41 = ﬁrﬁm-}-l

Table 1: Symplectic Lanczos Method

Note that only one matrix-vector product is required for each computed Lanczos
vector w,, or v,. Thus an efficient implementation of this algorithm requires
6n + (4nz + 32n)k flops' where nz is the number of nonzero elements in Hp and
2k is the number of Lanczos vectors computed (that is, the loop is executed k times).
The algorithm as given in Table 1 computes an odd number of Lanczos vectors, for

!(Following [25], we define each floating point arithmetic operation together with the associated integer
indexing as a flop.)
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a practical implementation one has to omit the computation of the last vector vgyq
(or one has to compute an additional vector wyy1).

There is still some freedom in the choice of the parameters that occur in this
algorithm. Possibilities to remove these ambiguities have been discussed in [36].
Essentially, the parameters ¢,, can be chosen freely. Here we set 6,, = 1. Likewise a
different choice of the parameters (., v, is possible.

In the symplectic Lanczos method as given above we have to divide by a parameter
that may be zero or close to zero. If such a case occurs for the normalization parameter
Cm+1, the corresponding vector v,,41 1s zero or close to the zero vector. In this case,
a symplectic invariant subspace of H (or a good approximation to such a subspace)
is detected. By redefining v,,11 to be any vector satisfying

v IpUmyr = 0
w! Jptmpr = 0
for y = 1,...,m, the algorithm can be continued. The resulting Hamiltonian .J-

Hessenberg matrix is no longer unreduced; the eigenproblem decouples into two
smaller subproblems. In case w,, is zero (or close to zero), an invariant subspace
of Hp with dimension 2m — 1 is found (or a good approximation to such a subspace).
It is easy to see that in this case the parameter v, will be zero (or close to zero).
Two eigenvalues and one right and one left eigenvector can be read off directly from
the reduced matrix H>™? as in (4).

Thus if either v,,41 or w,41 vanishes, the breakdown is benign. If v, # 0
and w41 # 0 but v,41 = 0, then the breakdown is serious. No reduction of the
Hamiltonian matrix to a Hamiltonian J-Hessenberg matrix with v; as first column
of the transformation matrix exists. In this case we propose to use an implicit
restart technique to overcome the breakdown by changing the starting vector. Before
discussing this approach in Section 5, we need to introduce the SR decomposition
which will turn out to be fundamental in the restart process.

4 The SR Decomposition

In [13, 46], the decomposition Ty, — pl = QR and the corresponding QR step,
T, = QTT.Q, play a key role in implicit restarts for the symmetric Lanczos method.
These transformations preserve the symmetry and tridiagonality of T as well as the
orthogonality of the updated Lanczos basis vectors. In the implictly restarted Lanczos
method for nonsymmetric matrices [26], the HR decomposition and a corresponding
HR step [7] is used, as this transformation preserves sign-symmetry along with the
tridiagonality of the Ty and the bi-orthogonality of the basis vectors.

Although symmetry is lacking in the symplectic Lanczos process defined above,
the resulting matrix E}%k is a permuted Hamiltonian .J-Hessenberg matrix as in (10).
In order to preserve this structure and the J-orthogonality of the basis vectors it turns
out to be useful to employ an SR decompositon of EI%]“ — ul,p € IR. Besides this

single shift we study double shifts (Eﬁ—,’“ — ,u]) (Ef—,k + ,u]) where p € R or pp € :R
(1 = v/—1). Double shifts with purely imaginary values turn out to be useful in
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connection with the computation of low rank approximations to the solution of the

continuous-time algebraic Riccati equation as will be shown in Section 7.2.
The SR decomposition has been studied in, e.g., [9, 15]. A slightly modified
version of the notation of [9] will be employed here.

DEFINTION 4.1.
a) A matrix

b)

H:lHll HlZ]

H21 H22

where H;; € IR™" is called a J-Hessenberg matrix if Hyy, Hqy, Hyy are upper
triangular matrices and Hyy is an upper Hessenberg matriz, i.e.,

N

H s called unreduced if Hyy is nonsingular and the upper Hessenberg matrix

H

Hyy is unreduced, i.e., has no zero entry in its first subdiagonal.

H s called a J-triangular matrix of Hyy, Hya, Hay, Hae are upper triangular
matrices and Hqyy has a zero main diagonal, i.e.,

NN
H= SENE

H s called a J-tridiagonal matrix if Hyy, Hoy, Hyy are diagonal matrices and
Hyy is a tridiagonal matriz, i.e.,

NN
NN\

H

REMARK 4.1. A Hamiltonian J-Hessenberg matrix H e R*™ ™ is J-tridiagonal and
Hamiltonian.

THEOREM 4.1. Let X be a 2k x 2k nonsingular matriz. Then :

a)

b)

There exists a symplectic 2k x 2k matriz S and a J-triangular matriz R such
that X = SR if and only if all leading principal minors of even dimension of
PXTJXPT are nonzero.

Let X = SR and X = SR be SR factorizations of X. Then there exists a
matrix
C F
p-[0 &

where C' = diag(ci,...,c,), F' = diag(fr,..., fn) such that S = SD™! and
R = DR.
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¢) Let X = H be an unreduced Hamiltonian J- Hessenberg matriz. IfH ul = SR,
w € IR, with S and R satisfying a) exists, then H=S"HS = RS + ul s a

Hamiltonian J-Hessenberg matriz.
d) If u in ¢) is an eigenvalue of ﬁ, then ?Lgmk =, Ek,k = —u, and Eghk =0.

e) Let X = E be an unreduced Hamiltonian J-Hessenberg matriz. If the decom-
position (H — pl)(H + pl) = SR, p € IR or p € IR, with S and R satisfying
a) exists, then H = S™'HS is a Hamiltonian J-Hessenberg matriz.

f) If pin €) is an eigenvalue of E, then ?Lm;c_l = iALk_LQk = 0 and the 2 x 2

: h h :
submatriz | ~ ¥ TRk ] has the eigenvalues p and —p.
2k hak2k

Proof:
For the original statement and proof of @) see Theorem 11 in [18].

)
For the original statement and proof of b) see Proposition 3.3 in [9].
For the original statement and proof of ¢) and €) see Remark 4.1 in [9].
[

The proof of d) and f) follows the lines of [26, Theorem 2 (iii)]. A detailed

derivation is given in [3]. Vv

Assuming its existence, the SR decomposition and SR step (that is, H= S_1ES)
possesses many of the desirable properties of the QR method. For the moment, it will
be assumed that the SR decomposition always exists. A discussion of the existence
and stability of the SR step in the context of the Lanczos algorithm is provided in
Section 6.

An algorithm for explicitly computing S and R is presented in [9]. As with
explicit QR steps, the expense of explicit SR steps comes from the fact that both
S~ and S have to be computed explicitly. A preferred alternative is the implicit SR
step, an analogue to the Francis QR step [20, 21, 25, 32]. The first implicit rotation is
selected so that the first columns of the implicit and the explicit S are equivalent. The
remaining implicit rotations perform a bulge-chasing sweep down the subdiagonal to
restore the J-Hessenberg form. As the implicit SR step is analogous to the implicit
QR step, this technique will not be discussed here. For a detailed derivation of an
implicit single and double shift SR step see [3].

The algorithm for the implicit double shift uses 4k — 3 transformations, the
algorithm for the implicit single shift 2k — 1. In the double shift case, 3k — 2 of
these transformations are orthogonal (k in the single shift case). These are known
to be numerically stable. Thus, in both algorithms (k — 1) permuted symplectic
Gaussian transformation matrices have to be used. Problems can arise here because
of breakdown or near breakdown. Since the condition number of these matrices is
not bounded, such a transformation can cause a dramatic growth of rounding errors.
We come back to this problem in Section 6.
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5 A Restarted Symplectic Lanczos Method

Given that a 2n x 2k matrix S# is known such that
(12) HpSE = SFHE + Ce1vppaeqy
as in (11), an implicit Lanczos restart computes the Lanczos factorization
(13) HpSE = SPHY + G tien,
which corresponds to the starting vector
v1 = p(Hp — pl)vy

without having to explicitly restart the Lanczos process with the vector ©v;. Such
an implicit restarting mechanism will now be derived analogous to the technique
introduced in [26, 46].

For any permuted symplectic 2k x 2k matrix Sp, (12) can be reexpressed as

Hp(SESp) = (SFSp)(Sp HFESP) + Cesrvirien, Sp.
Defining S = S Sp, H2F = S5' H2FSp this yields
(14) HPSQIC = é?gkf{]%k + Ck+1’vk+1€§k5p.

Let s;; be the (¢,7)th entry of Sp. If we choose Sp from the permuted SR
decomposition H2*—ul = SpRp, then it is easy to see that Sp is an upper Hessenberg
matrix. Thus the residual term in (14) is

T T
Crt1Vi41(S2k,2k—1€55_1 T S2k,26€5)-

In order to obtain a residual term of the desired form "vector times e%,” we have to

truncate off a portion of (14). Rewriting (14) as

r72k—2 ;
P 0 Ck€2k—3
T - -
S2k _ r&2k=2 u Cr€gp_: Ok B
HPS :[ P Vg, Wk, ’Uk-l-l] 2k=2 v Ty
0 Vi _5k
0 Ck+132k,2k—1 Ck+132k,2k
we obtain as a new Lanczos identity
G2k—2 _ &G2k—2472k—2 | % v T

Here, 5k, gk, Bk, U denote parameters of ]'—iff_—,k, Ck+1 a parameter of E]%k In addition,
Uk, Wy are the last two column vectors from S%k, while vgyq is the next to last column
vector of S2.

As the space spanned by the columns of S% = P”TS]%’“P]“ is symplectic, and
Sp is a permuted symplectic matrix, the space spanned by the columns of S22 =
pr" g%k_QPk_l is symplectic. Thus (15) is a valid Lanczos factorization for the new
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starting vector ¥1 = p(Hp—pl)v1. Only one additional step of the symplectic Lanczos
algorithm is required to obtain (13) from (12).

Note that in the symplectic Lanczos process the vectors v; of S satisfy the
condition ||vj||, = 1 and the parameters ¢; are chosen to be one. This is no longer
true for the odd numbered column vectors of Sp generated by the SR decomposition
and the parameters 5]- from HZ and thus for the new Lanczos factorization (15).

In our applications we have to compute a truncated reduction E]?—,j of Hp with
7 < n. In case the symplectic Lanczos method breaks down before H?% can be
computed, we propose to employ a single shifted implicit restart as described above
to overcome the breakdown.

The extension of this technique to the double or multiple shift case is straightfor-
ward.

6 Numerical Properties of the Implicitly Restarted Symplec-
tic Lanczos Method

6.1 Stability Issues

It is well known that for general Lanczos-like methods the stability of the overall
process is improved when the norm of the Lanczos vectors is chosen to be equal to
1 [41, 47]. Thus, Freund and Mehrmann propose in [23] to modify the prerequisite
S]:ngSp = Jp of our symplectic Lanczos method to

I 0 (oa] T
— 01 0
0 09
SpJpSp = —oy 0 _.y
0 o,
L —o, 0 ]
and
il = lJwill =1,  j=1,....n.

For the resulting algorithm and a discussion of it we refer to [23]. It is easy to see
that Hp = Sp' HpSp is no longer a permuted Hamiltonian .J-Hessenberg matrix, as
S 1s only almost symplectic, but

SHp = (SHp)".

Thus H = PTHpP still has the desired form of a Hamiltonian J-Hessenberg matrix
but the upper right n x n block is no longer symmetric. Therefore H is diagonally
similar to a Hamiltonian .J-Hessenberg matrix. -

Unfortunately an SR step does not preserve the structure of H and thus this
modified version of the symplectic Lanczos method can not be used in connection
with our restart approaches.
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Without some form of reorthogonalization any Lanczos algorithm is numerically
unstable. Hence we re-J-orthogonalize each Lanczos vector as soon as it is computed
against the previous ones via

9 pme _oT
Wy = Wy 4+ SPTEIETISE TR TR,
2 2mT
V1 = Umg1 + S Jp S Jpvmar.

This re-J-orthogonalization is costly, it requires 16n(m — 1) flops for the vector w,,
and 16nm flops for v,,41. Thus, if 2k Lanczos vectors vy, wy, ..., vy, wi are computed,
the re-J-orthogonalization adds 16n(k 4+ 1)k — 32n flops to the overall cost of the
symplectic Lanczos method.

For standard Lanczos algorithms, different reorthogonalization techniques have
been studied (for references see, e.g., [25]). Those ideas can be used to design
analogous re-J-orthogonalizations for the symplectic Lanczos method.

Another important issue is the numerical stability of the SR step employed in the
restart. During the SR step on the 2k x 2k Hamiltonian J-Hessenberg matrix, all
but k — 1 transformations are orthogonal. These are known to be numerically stable.
For the k£ — 1 nonorthogonal symplectic transformations that have to be used, we
choose among all possible transformations the ones with optimal (smallest possible)
condition number.

6.2 Why Implicit Restarts ?

Implicit restarts have some advantages over explicit restarts as will be discussed in
this section. First of all, implicit restarts are more economical to implement. Assume
we have to employ a restart after k steps of the symplectic Lanczos method. An
implicit single shift restart requires

28n - k 4 16n + (100k — 65) flops for the implicit SR step
and 38n + 4nz flops for one additional Lanczos step
and 32n -k — 16n flops for re-.J-orthogonalization.

That is a total of 4nz 4+ 60n - k + 38n + 100k — 65 flops.

An explicit restart requires

Anz - k4 32n -k + 6n  flops for k Lanczos steps
and 16n-(k+ 1)k —32n  flops for re-J-orthogonalization.

This sums up to 4nz - k + 16n - k% + 48n - k — 26n flops. If an explicit restart with
the starting vector ¥, = (Hp — ul)vy would be performed, this would add another
8n? + 2n to this flop count.

From these numbers we can conclude that performing an implicit restart is
significantly cheaper than explicitly restarting the Lanczos iteration. This is due
to the fact that an implicit SR step is usually cheaper than k& Lanczos steps (4nz
+ 28n - k 4 54n + (100k — 65) flops vs. 4nz - k + 32n - k + 6n flops). Besides
we have to re-J-orthogonalize only once while an explicit restart would require a
re-J-orthogonalization in each iteration step. For different re-.J-orthogonalization
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techniques implicit restarts are also advantageous. For double shifted or multishifted
restarts the implicit technique is still favourable although the difference in the flop
count becomes smaller.

Performing an explicit restart with (Hp — ul)vy or (Hp — pI)(Hp + pl)vq as new
starting vector, one is forced to directly multiply the old starting vector by matrices
of the form (Hp — pI). This can be avoided by the implicit method.

Note that the starting vector vy can be expressed as a linear combination of the
eigenvectors y; of Hp :

2n
v = Zaiyi-
=1

Then a single shifted starting vector takes the form

n
1= p(Hp — pl)vr = py_ il Ai = p)yi

i=1
where the ); are the eigenvalues corresponding to y;. As the single shift selected will
be real, applying such a modification to vy tends to emphasize those eigenvalues of
Hp in vy which correspond to eigenvalues \; with the largest positive or negative
real part (depending on whether the chosen shift is positive or negative). Thus it is
possible that the vector v; will be dominated by information only from a few of the
eigenvalues with largest real part. An implicit restart directly forms 5}%’“ from a wide
range of information available in SZ and this should give better numerical results
than the explicit computation of v;.

As an example consider

H=U [ 0 —AT ] U
2 1
-1 2
is the product of randomly generated symplectic Householder and Givens matrices.
The eigenvalues of H can be read off directly. The following computations were done
using MATLAB? on a SUN Sparcl0. The starting vector v; is chosen randomly.
After 4 steps of the symplectic Lanczos method the resulting 8 x 8 Hamiltonian
J-Hessenberg matrix H® has the eigenvalues (computed by the MATLAB function

eig)

where A = diag(—10°,9,8,7,6,5,4, 3,

) is a block diagonal matrix and U

9.999999999999997¢ + 05
—9.999999999999997¢ + 05
3.040728370123861e + 00
sy ) —3.040728370123995¢ + 00
9.200627380564711e + 00
—9.200627380564642¢ + 00
9.477682371618508¢e + 00
—9.477682371618551e + 00

2MATLAB is a trademark of The MathWorks, Inc.
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To remove an eigenvalue pair from H® one can perform an implicit double shift restart
analogous to the single shift restart described in Section 5 (for a detailed derivation
see [3]. Removing the two eigenvalues of smallest absolute value from H®, we obtain
a Hamiltonian .J-Hessenberg matrix ]j]fmpl whose eigenvalues are

9.999999999999994¢ + 05 )
—9.999999999999994¢ + 05

9.200627382497721e 4 00
—9.200627382497721e + 00

9.477682372414739¢ + 00
—9.477682372414737¢ + 00 )

v

NS, ) =

impl

From Theorem 4.1 f) it follows that these have to be the 6 eigenvalues of H® which
have not been removed. As can be seen, we loose 4 — 5 digits during the implicit
restart. Performing an explicit restart with the explicitly computed new starting
vector ¥y = (H — pul)(H + pl)v; yields a Hamiltonian .J-Hessenberg matrix ﬁfm
with eigenvalues

9.999999999999999¢ + 05
—9.999999999999999¢ + 05

9.200679454660859¢ + 00
—9.200679454660861¢ + 00

9.477559041923007¢ + 00
—9.477559041923007¢ + 00 )

This time we lost up to 10 digits. As a general observation from a wide range of
numerical tests, the explicit restart looses at least 2 digits more than the implicit
restart.

6.3 Breakdowns in the SR Factorization

So far we have assumed that the SR decomposition always exists. Unfortunately
this assumption does not always hold. If there is a starting vector ¥; for which the
explicitly restarted symplectic Lanczos method breaks down, then it is impossible
to reduce the Hamiltonian matrix H to Hamiltonian .J-Hessenberg form with a
transformation matrix whose first column is v;. Thus, in this situation the SR
decomposition of (H — pl) or (H — pI)(H + pl) can not exist.

As will be shown in this section, this is the only way that breakdowns in the SR
decomposition can occur. In the single shift SR step, only transformations of the type
Gp and Jp are used. As the latter ones are orthogonal symplectic Givens rotations,
their computation can not break down. Thus the only source of breakdown can be
one of the symplectic Gaussian eliminations Gp.

THEOREM 6.1. Suppose the Hamiltonian J-Hessenberg matrix H2* corresponding
to (11) is unreduced and let p € IR. Let Gp(j,y) be the jth permuted symplectic Gauss
transformation required in the SR step on (El%k — pul). If the first 3 — 1 permuted
symplectic Gauss transformations of this SR step exist, then Gp(j,y) fails to exist if
and only if 'lV)JTJpHp'lv;j = 0 with v; as in (15).
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The proof follows the lines of [26, Theorem 3.

A symplectic Gauss transformation is defined such that

where y = —b/a. Gp(k,y) denotes the permuted version of G(k,y), i.e.,
Gp(k,y) = PG(k,y)PT.
In the implicit SR decomposition, the first implicit rotation is selected so

that the first columns of the implicit and the explicit S are equivalent.
The remaining implicit rotations perform a bulge-chasing sweep down the

subdiagonal to restore the J-Hessenberg form.

Assume that we have computed a symplectic matrix g}%j such that
-1

has the desired permuted J-Hessenberg form in the first 25 columns.

Then from (11),

we obtain

|

SH 0
0

I

SH 0

I

G(k,y)(aer + benyr-1) = Bentr

2% _ G2 T
HpSp = Sp Hp' + (104165,

Y 9i 7~ Y P TNy
Whel‘e SP] == SP]SPJ and HP] == (SPJ) IHP]SPJ.

Since

it follows that
(16)

— JL(SEY JEHpSE = HY .

(SEYTIBSE = T,

527 &27 1723 o T o2
HpSp' = Sp Hp' + (j41vj11€5;5p

The leading (25 + 2) x (25 + 2) principal submatrix of

is

SE 0] G| SE 0
0 I P I
b Bl 0 & ]
v =610 0
0 G
0 0
5]‘ ﬁv]‘ 0 T2
Dj —Sj 0 T
Ty M) 5j+1 ,3j+1
0 0 Juipyr =541 |

15
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as CHlegjg}Z;j = [0,---,0,21, 2] because 51233‘ is an upper Hessenberg
matrix. On the other hand, this leading principal submatrix can be
expressed as

JHLIr &2, . 1T E27 [0y oy,
—Jp [SF |vj1|wjp ] JpHP[SE [vj1]wjt4]

using (16). That is

727 J(Q2NT Tnpg ., . I Q2T T o).
JiE | — T30 (ST IpHpoi —Jh(SP)T TpHpw;yy
T 2) , .
—w!, JpHpS} Sin1 Biti
T n G2 . .
U]-}.]_‘]PHPSP l/]_l_l — U541

Thus we have

. _ ot n 5.
vy = —w;JpHpD;

— ol T H e
Ty = —w;JpHpw;.

The next step in the implicit SR step eliminates x; using a transformation
of type Gp. This can be done if 7; is nonzero. Hence, the SR step breaks
down if 7; = 0 and thus implies a breakdown in the symplectic Lanczos
method.

The opposite implication follows from the uniqueness of the symplectic

Lanczos method. N4

A similar theorem can be shown for the double shift case considered in Section 7.2.

7 Applications

7.1 Approximating Eigenvalues and Eigenvectors of Hamil-
tonian Matrices

Lanzcos-type algorithms are especially well-suited for computing some of the extremal
eigenvalues of a matrix. As a well-known fact, Lanczos algorithms usually produce
Ritz values (i.e., eigenvalues of the reduced matrix) which converge very fast to the
extremal eigenvalues of the original matrix (see e.g. [25]).

The computed Ritz values can also be used as shifts either in the restart process
(Section 7.2) or to accelerate convergence in the SR algorithm for computing a
low rank approximation of the corresponding algebraic Riccati equation (see [45]).
Besides, purely imaginary Ritz values signal that a stable k-dimensional invariant
subspace of the computed H?* does not exist. This will be considered in Section 7.2.

Computing the Ritz values after the k—th symplectic Lanczos step requires the
computation of the eigenvalues of a 2k x 2k Hamiltonian .J-Hessenberg matrix as in
(4). This can be done using the standard Hessenberg QR algorithm which requires
O(k*) flops. We present two different approaches which require only O(k?) flops.
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7.1.1 Approximating the Eigenvalues of a Hamiltonian ./-Hessenberg
Matrix Using a Square Reduced Method
Squaring H?*, we obtain a matrix of the following structure :

(17) (EQk)2 — A/Iﬂc — [ */‘/I{C Z\/fsz ] — & \\0
0 Mlk \\
where
[ e ]
p2 M2 s
LMf = p3 s
‘L/)k
L Pk Mk
H; = 5]2-—|—/3jl/j, jzl,...,k,
P = V-1, j:2a"'ak7
Vi = v, j=2,... k.

Hence the eigenvalues of M?%* may be obtained by computing the eigenvalues
{M,..., M} of the nonsymmetric tridiagonal matrix MF. Therefore, o(H?*) =

{:I:\/i, ceey :I:\/Xik} which reflects the structure of the spectrum of the Hamiltonian
matrix H2¥,

This approach is similar to Van Loan’s square reduced algorithm [49]. There, a
general Hamiltonian matrix H is first reduced to the so-called square reduced form,
i.e., a symplectic orthogonal matrix U is computed such that

N N, _KID
0 NI |™ N

Then the eigenvalues of H are computed by taking the square roots of the eigenvalues
of the upper Hessenberg matrix N;. Since Hamiltonian J-Hessenberg matrices are
already square reduced, the reduction process (18) can be skipped in our case.
Besides, M; is tridiagonal whereas in the general case, the corresponding block
Ny is an upper Hessenberg matrix. Unfortunately, the tridiagonal matrix M; is
nonsymmetric such that we either have to give up numerical stability or preservation
of the tridiagonal structure when computing the eigenvalues.

Structure preserving methods for computing eigenvalues of unsymmetric tridiago-
nal matrices include the LR algorithm [44] and the recently proposed DQR algorithm
[48]. All these methods require only O(k?) flops, but may suffer from numerical in-
stabilities. For a discussion of these methods we refer to the references given above
and the references therein.

(18) (UTHU)? = [

For a detailed discussion of Van Loan’s algorithm see [10, 49]. Squaring the
Hamiltonian matrix may cause a loss of accuracy. A worst case bound for the
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eigenvalues computed by Van Loan’s method indicates that one may loose essentially
half of the significant digits compared to eigenvalues computed by the QR algorithm.
This is observed rather seldom in practice, though. On the other hand, this method
reflects the structure of the spectrum of Hamiltonian matrices, whereas the standard
QR algorithm often does not find exactly k£ eigenvalues in each half plane since small
perturbations may cause the computed eigenvalues to cross the imaginary axis.

7.1.2 Computing Eigenvalues and Eigenvectors by the SR Algorithm
Given a Hamiltonian J-Hessenberg matrix H = H, € R*™ % as in (4), the
SR algorithm computes a sequence of orthogonal and nonorthogonal symplectic

similarity transformation matrices S;, 7 = 0,1,..., that preserve this structure, i.e.,
H;y, = SilHij is a Hamiltonian J-Hessenberg matrix for all ; = 0,1,.... The
sequence H; converges to a Hamiltonian matrix
— — Dy D
(19> HSR — (SSR)—IHSSR — 1 2T
0 —-Dy

where Dy, D, are block diagonal & x & matrices with blocks of size 1 x 1 or 2x 2 and all
transformations S; are accumulated in the symplectic matrix S5, The eigenvalues
of H are thus given by D; and their counterparts in —D7T. The eigenvectors
corresponding to the eigenvalues contained in D; are given by the first & columns of
SSETf (i, s;) represents such a right eigenpair, then because of the Hamiltonian
structure, the corresponding left eigenpair is (—\;,s7.J). If only eigenvalues are
desired, the SR algorithm is an O(k?) algorithm. If eigenvectors and/or invariant
subspaces are required, S°F has to be formed explicitly which requires O(k?) flops.
For a detailed discussion of QR-type algorithms based on SR decompositions see,
e.g., 9, 15, 36, 45].

Now assume that we have performed k steps of the symplectic Lanczos procedure
and thus obtained the identity (after permuting back)

(20) HS™ = S*H™ 4 (1 pqel.

We can use the SR algorithm to compute eigenvalues and eigenvectors of H2*,
Setting H = H* and D; = D¥, i = 1,2, in (19) and multiplying (20) from the right
by S5F yields

Di  Dj

¢ 2k @SR _ @2k SR
(21) HSGSR = g% g lO T

] + Cri1Dppreg, 5.

Thus the Ritz values are the eigenvalues A; of D¥ and their counterparts —\;. Now
assume JA; is a converged Ritz value, i.e., a sufficient approximation to an eigenvalue
of H. As in standard Lanczos type algorithms, an approximation to the (right)
eigenvector corresponding to A; can be read off from (21) if

(22) 1 y; — Ayl = | CrarBrpreds;| = [Cran(s)arl [Brsal]

is sufficiently small (see, e.g., [6]), here y; = S?*S5F¢; and s; = S5Fe;. Thus the last
row of S5 shows which Ritz values and Ritz vectors yield good approximations to
eigenvalues and eigenvectors of H.
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Another application of the SR algorithm and of (21) is described in the next
section.

7.2 Low-Rank Approximations to Invariant Subspaces of
Hamiltonian Matrices and Solutions of Algebraic Riccati

Equations
It is well known that the solution of the CARE (2),

Q+ATX + XA - XGX =0,

is connected to the invariant subspaces of the corresponding Hamiltonian matrix. If

IEI// ] € R**" span an invariant subspace of H and V € IR™" is

invertible, then X = —WV ™! solves (2). For discussion of existence and uniqueness
of such solutions and further issues like symmetry see e.g. [33, 37, 42].

In control theory one is usually concerned with the symmetric ﬂ)ositive semidefi-
nite) stabilizing solution of (2), i.e., a solution X such that A — GX is stable. Under
the conditions that (A, () is stabilizable, (@, A) is detectable, such a solution ex-
ists, 1s unique and may be determined by computing the stable invariant subspace
of H. For simplification we will in the following assume that these conditions hold.
Note that under these conditions, the Hamiltonian matrix does not have any purely
imaginary eigenvalues.

Now suppose we have computed k steps of the symplectic Lanczos algorithm.
Thus we obtain the 2k x 2k Hamiltonian .J-Hessenberg matrix H?. For a moment
we will assume that H2* has no purely imaginary eigenvalues. Hence we can compute
an invariant subspace of H** by the SR algorithm as in (19). In [9] it is described
how to separate the stable invariant subspace from (19) by symplectic similarity
transformations which preserve the structure of (20). We can thus assume that D¥

the columns of l

is stable and that the first & columns of S5F span the stable invariant subspace of
H?. Combined with the Lanczos factorization we again obtain (21). If

23 Yk — S2kSSR — Yk Yk ’ Yk, Yk e ]RQTLX]C’
1 2 1 2

we can conclude that the columns of Y}* span an approximate stable H-invariant
subspace of dimension k if

(24) |2 = YEDE| = (G [orareq Y|

is sufficiently small.

We want to use this low-rank approximate stable H-invariant subspace to compute
a low rank approximation to the solution of the CARE (2). So far it is not clear what
is the best way to obtain such a solution, especially because there may be different
interpretations of what is the “best” low rank approximation. In the following we
will describe one possibility to construct such a low rank approximation.
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Since S%TJ“@;C_H = 0 and Y* satisfies the symplecticity property

(25) Y Yk = gk,
we obtain from (21)
DF Dk
26 Ty Y= | T
(26) 0 —Di"
and from the lower left block of this equation
(27) —VRAYE YRRV - v v v ATY =0

where Y} = l ] Let Y5 = Z*RF be an “economy size” QR factorization,

i.e., 7F € R™* has orthonormal columns and R* € IR*** is an upper triangular
matrix. If Y} has full column rank, R* is invertible. Premultiplying (27) by R
and postmultiplying by R yields

28) —RFIYETAZN 4 25T Q2 — RYIYETGYERNT — 2FTATYE R = 0.
Setting X* = —Yfle_leT we obtain
(29) 7 (XFA+Q - XFGX*F + ATXY) 7F =0,

The computed X* may now be considered as a low rank approximation to the solution
of (2). From the symplecticity property (25) it is easy to verify that X* is symmetric
and from (26) we obtain

. T y -1
(30) ZF (A - GX"ZF = R* DR 4 EF

where EF is the upper left k x k block of ZkT(CkH'ﬁkHengSR). From (29) and (30)
it is clear that in exact arithmetic for k = n, X* is the required stabilizing solution

of (2).

By now, we have assumed that H?* has no eigenvalues on the imaginary axis.
Under the above assumptions, H has no purely imaginary eigenvalues. But for ﬁ%,
k < n, computed by the Lanczos process, in general this property (and also the
stabilizability-detectability condition) does not hold. Thus we may expect H?* to
have purely imaginary eigenvalues for some k. If this happens, H** does not have a
stable, k-dimensional invariant subspace.

One way to remove these eigenvalues is to employ a double shifted
restart.  Suppose H?** has ¢ pairs of purely imaginary eigenvalues denoted by
Uy, =1, . . ., 2e, —2y. We can then perform a double shifted implicit restart cor-
responding to the starting vector ¥ = p(H — vy I)(H + w1 I)vy to obtain a new
Lanczos identity which after permuting back reads

(31> HS2F—2 — §2k—2 fr2k-2 + fkeg“k_Q.
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Because of Theorem 4.1 the Hamiltonian .J-Hessenberg matrix H?*=? has the same
eigenvalues as H** besides the removed pair 4+uu;. The remaining pairs of purely
imaginary eigenvalues can be removed with another ¢ — 1 double shifted implicit
restarts to obtain a new Lanczos factorization

(32> Héz(k—z) _ 5:2(k—£)]”{2(k—€) F Fress e%‘(k_g)
where the eigenvalues of H2(=D are those eigenvalues of H?* having nonzero real

parts. The starting vector corresponding to the Lanczos factorization (32) is the
multishift vector

01 = p(H —ape)(H +appl) - oo - (H — oy D) (H + g Iy,

Thus it is possible to compute a low rank approximate stable H-invariant subspace
of dimension k£ — ¢ and the corresponding Riccati solution. If an approximation of
dimension k is required, we may use the same approach as in [26] where restarts
are used to obtain a stable reduced order system. Performing ¢ symplectic Lanczos
steps, we obtain from H2(k=) 3 new Hamiltonian J-Hessenberg matrix H?* with
hopefully no eigenvalues on the imaginary axis. If there are again purely imaginary
eigenvalues, we have to repeat the restart process. In our numerical experiments, this
never produced an H?* having again ¢ (or even more) pairs of purely imaginary Ritz
values. With this approach we obtain after a finite number of restarts a Hamiltonian
J-Hessenberg matrix of required dimension having only eigenvalues with nonzero real
part.

8 Numerical Results

In this section we present some examples to demonstrate the ability of the proposed
algorithm to overcome (near) breakdown and one example to show the typical
behaviour of the symplectic Lanczos method. An example where the restart process
is used to remove eigenvalues was already given in Section 6.2.

All computations were done using MATLAB Version 4.2c on a SUN SPARC10
with IEEE double precision arithmetic and machine precision ¢ = 2.2204 x 107'¢.
In case the symplectic Lanczos method encounters a serious breakdown (or near
breakdown), that is if v; = 0 for some j (or |v;| < tol where tol is an appropriately
chosen value), then an implicit single shifted restart as discussed in Section 5 is
employed. If breakdown occurs during the restart or if the original breakdown
condition persists after the restart, the implicit restart is repeated at most 3 times
with a different randomly chosen shift. After three consecutive unsuccessful recovery
attempts, the restart attempts are stopped and an explicit restart with a new random
starting vector is initiated.

We tested the restarted symplectic Lanczos method for the Hamiltonian matrices
corresponding to the continuous-time algebraic Riccati equations given in the
benchmark collection [4]. Restarts were only encountered in very few cases and
we never had to perform an explicit restart when choosing a random starting vector.

To demonstrate the restart process we report the two most intriguing of those
examples. Due to a special starting vector the implicit restart fails for the
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first example and an explicit restart has to be performed. The second example
demonstrates a serious breakdown overcome by an implicit restart.

Ezxample 1: (See [2, Example 1] and [4, Example 7].) The first example shows that
a serious breakdown can not always be overcome by employing an implicit restart.

Let

1 0 €0
0 =2 0 0
H=\1 1 _1
1 1 0 2

As a starting vector vy for the symplectic Lanczos method we choose e;. During the
first step of the symplectic Lanczos algorithm the following quantities are computed:

G=1, n=1 w=e+te

bi=¢ (=3, vy=eq
For the second step, w, and vy have to be computed :
Wy = ey, Vo =0.
A serious breakdown is encountered. An implicit restart with the new starting vector
vy = (Hp — pl)e; = [1 — p, 1,0,1]7

will break down at the same step, as any further restart will. In fact, any restart
with a starting vector v; of the form [a, b,0, ¢]7 will break down as this implies that

€b
'11)1:i G_Zb s 1/12612—2(16—662, /glzi
141 0 141
a—+e€

and

Uy = €4
as before. For any vector of the form v = [0,0,0, z]” we have vT.Jp Hpv = 0 and thus
a serious breakdown. If our starting vector is of the form [a, b, 0, c]T, then the new
starting vector in the single shifted restart is of the same form and thus the serious
breakdown can not be overcome by implicit single shifted restarts. An explicit restart
with a random starting vector is successful.

FEzample 2 : (See [14] and [4, Example 13].) The second example demonstrates a
serious breakdown overcome by an implicit single shifted restart. Let

0 0.4 0 0 0 0 0 0
0 0 0.345 0 0 0 0 0
0 —524000 —465000 262000 0 0 0 0
7 — 0 0 0 —10° 0 0 0 102
1 0 0 0 0 0 0 0
0 0 0 0 —0.4 0 524000 0
0 0 1 0 0 —0.345 465000 0
| 0 0 0 0 0 0 —262000 10° |
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As a starting vector vy for the symplectic Lanczos method we choose e;. During the
first step of the symplectic Lanczos algorithm the following quantities are computed:

G=1, n=1, wi=e—-¢
131 = —1, CQ = 04, Vg =— —€4.

A serious breakdown is encountered as v, = 0. After an implicit restart with the new
starting vector vy = (Hp — pul)e; = [—p,1,0,0,0,0,0,0]7, the breakdown condition
vy = 0 persists. Thus the restart is repeated with a different shift g yielding the new
starting vector vy = (Hp — pul)(Hp — pl)ey = [jipr, —p — Ji,0,—0.4,0,0,0,0]%. This
restart is successful.

Example 3 : We did a vast number of test runs using randomly chosen Hamiltonian
matrices and randomly chosen starting vectors (as well as the starting vector ey).
The occurence of a serious breakdown is very unlikely here as these test examples
typically have nice properties. Table 2 reports the distribution of the values of v; for
2000 randomly chosen 100 x 100 Hamiltonian matrices and randomly chosen starting
vectors as the symplectic Lanczos method was used to compute 20 Lanczos vectors,
that is the algorithm ran for 10 steps.

interval for v; number of occurences
lv;] < 107 0
1078 <y < 1073 2
107% < |p] <1074 9
107* < |p] <1073 113
1072 < |y| < 1072 1010
1072 < || < 1071 eV
107! < |y < 10° 10123
10° < |p| < 10* 26
10" < |p| < 102 1000
10% < |y 0

Table 2: Distribution of v;

The occurence of a near breakdown is dependent on the value chosen for tol.
Choosing tol too small (like tol = /e where ¢ is the floating point relative accuracy)
results in almost no breakdown, choosing tol too large in too many. A good choice
is dependent on the desired goals : the desired accuracy, the desired speed, etc. A
breakdown during the implicit SR step was never encountered during these test runs.

As expected from a Lanczos method, the Ritz values converge to the eigenvalues
of largest modulus after a small number of steps.

Example 4 : In computational chemistry, large eigenvalue problems arise for
example in linear response theory. The simplest model of a response function for the
response of a single self-consistent-field state to an external perturbation is realized
by the time-dependent Hartree—Fock model. This leads to the generalized eigenvalue
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problem (see [39])

(33) lgﬂxz/\li _AE]:E

Here, A, B, 3 € R™" are symmetric and A € IR"*" is skew-symmetric. For a closed
shell Hartree-Fock wave function we have ¥ = I, and A = 0. Thus, the generalized
eigenvalue problem (33) reduces to the standard Hamiltonian eigenvalue problem

A B
-B -A

]x:)\x.

The order of the matrices considered in linear response theory can easily reach
n = 10°, 107. Computations with such models require a thorough implementation
as well as adequate data structures and are planned for the future. Here we want
to present only a simple model and the results obtained by the symplectic Lanczos
process. The chosen example is similar to an example presented in [19] where special
versions of the Lanczos algorithm for matrices as given in (33) are examined.

Let n = 100, D = diag(d,...,d,) and D= diag(a?l, .+, dy), where dy = 200.0,

dy = 100.0, ds = 50.0, d; = (i — 1)+ 0.001 for i = 4,...,n and d = dz = ds = 0.0,

d; = 1% 0.0001. Now set A = UTD,U and B = U D,U with a Householder matrix

w ‘LUT

U=1,—2—— where w =11, 2,...,100]. The resulting matrix

wlw
A B
=2 %)

is Hamiltonian and has eigenvalues
{#£200.0, £100.0, £50.0, A4, ..., £, }

where 0.001 < |A;| < 0.1 for i =4,...,n.
After three steps of the symplectic Lanczos algorithm (without re-J-orthogo-
nalization) we obtain the Ritz values

+1.999991457279083e+02, +9.931554785773068e+01, +3.371968773385778e+01.

That is, the largest eigenvalue is approximated with a relative accuracy of O(107%).
The next Lanczos step yields the Ritz values

+1.999999999999998e+02, +9.999999999999989e+401, +4.999999999997731e+401,
+8.451080813545205¢—02,

i.e., the three largest Ritz values have (almost) converged to the three largest
eigenvalues of H. Thus, one can expect a loss of symplecticity (J-orthogonality)
in the Lanczos vectors and, as in standard Lanczos algorithms, that the converged
eigenvalues will be duplicated. In fact, after 9 iterations we have Ritz values

+1.999999999999999e+402, £9.999999999999999e+01, +5.000000000000038e+01,

+1.999999999999997e+402, 49.999999999985583e+01, +4.999999974747666e+01,
+9.524662688488485e—02, +7.720710855953188e—02, +3.757475009324353e—02.
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Using complete re-J-orthogonalization, this effect is avoided and we obtain after 9
steps the following Ritz values :

+1.999999999999999e+02, £9.999999999999993e+4+01, +4.999999999999997e+01,
+9.754957790699192e—02, +9.154380154101090e—02, +8.237785481069571e—02,
+6.786890886560507e—02, +4.923341543122169e—02, +1.448276946901055e—02.

These first results give rise to the hope that the (restarted) symplectic Lanczos
algorithm is an efficient tool for the numerical solution of large scale Hartree—Fock
problems.

9 Concluding Remarks

We have presented a symplectic Lanczos method for the Hamiltonian eigenproblem
which is used to approximate a few eigenvalues and associated eigenvectors and to
compute a low rank approximation to the stable invariant subspace of a Hamiltonian
matrix which can be used to approximate the stabilizing solution of continuous-
time algebraic Riccati equations. Unfortunately, the symplectic Lanczos process
can break down before the desired number of eigenvalues is computed. When used
to compute a low rank approximation to the solution of continuous-time algebraic
Riccati equations, there is no guarantee that the symplectic Lanczos process yields a
reduced Hamiltonian matrix H2* having a stable k—dimensional invariant subspace
due to purely imaginary Ritz values. Inexpensive implicit restarts are developed
which can be used to overcome (near) breakdowns in the symplectic Lanczos process
and to remove the undesirable purely imaginary Ritz values.

As in the standard nonsymmetric Lanczos method one can expect convergence
of eigenvalues after a small number of steps. A restarted symplectic Arnoldi method
can be formulated along the lines of our restarted symplectic Lanczos method. But as
stated in [41] : When both the column and the row subspaces contain, respectively, /€
approximations to the eigenvectors of A then the Ritz values will be an e-approzimation
to X. This can not happen with one-sided approzimations (as the Arnoldi method
yields) unless the matriz is normal.

Our analysis shows that the implicitly restarted symplectic Lanczos method is
an efficient tool for extracting a few eigenvalues of large Hamiltonian matrices.
Nevertheless the method needs to be tested on a broader range of problems.

We have presented a possibility how the method can be used to approximate the
solution of algebraic Riccati equations. But it is yet not clear what is the best way
to form an approximate solution X from a low-rank approximation to the stable
invariant subspace of the Hamiltonian matrix. This will be the topic of further
studies. Future work will also include the study of symplectic Lanczos methods
for the (generalized) symplectic eigenvalue problem and the related discrete-time
algebraic Riccati equation as well as combinations of the restart process with look-
ahead approaches.
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