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Abstract

We present a constructive existence proof that every real skew�Hamiltonian matrix

W has a real Hamiltonian square root� The key step in this construction shows how

one may bring any such W into a real quasi�Jordan canonical form via symplectic

similarity� We show further that every W has in�nitely many real Hamiltonian square

roots� and give a lower bound on the dimension of the set of all such square roots�

Extensions to complex matrices are also presented�

This report is an updated version of the paper �Hamiltonian square roots of skew�

Hamiltonian matrices� that appeared in Linear Algebra � its Applications� v� 	
��

�� pp� �	� � ���

AMS subject classi�cation� ��A��� ��A��� ��A��� ��F�	� 
�B�	

� Introduction

Any matrix X such that X� � A is said to be a square root of the matrix A� For general
complex matrices A � Cn�n there exists a welldeveloped although somewhat complicated
theory of matrix square roots ��� �	� ���� and a number of algorithms for their e�ective
computation ��� ���� Similarly for the theory and computation of real square roots for real
matrices ���� ���� By contrast� structured square root problems� where both the matrix A
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and its square root X are required to have some extra �not necessarily the same� speci�ed
structure� have been comparatively less studied� Some notable exceptions include positive
�semi�de�nite square roots of positive �semi�de�nite matrices ���� ��� ���� M matrix square
roots of M matrices ��� ���� coninvolutory square roots of coninvolutory matrices ����� and
skewsymmetric square roots of symmetricmatrices ����� In this paper we investigate another
such structured square root problem� that of �nding real Hamiltonian square roots of real
skewHamiltonian matrices�

A real �n� �n matrix H of the form

H �

�
E F
G �ET

�
is said to be Hamiltonian if E�F�G � IRn�n � with F T � F and GT � G� Equivalently� one
may characterize the set H of all �n � �n Hamiltonian matrices by

H � fH � IR�n��n j �JH�T � JHg �
where J �

�
� I
�I �

�
and I is the n � n identity matrix� Complementary to H is the set

W � fW � IR�n��n j �JW �T � �JWg
of all skew�Hamiltonian matrices� Matrices in W are exactly those with block structure

W �

�
A B
C AT

�
where A�B�C � IRn�n � with BT � �B and CT � �C� Another useful way to look at
Hamiltonian and skewHamiltonian matrices is from the point of view of bilinear forms�
Associated with any nondegenerate bilinear form b�x� y� on IRk one has the following sets of
matrices�

A�b� � fS � IRk�k j b�Sx� Sy� � b�x� y� �x� y � IRkg �
L�b� � fH � IRk�k j b�Hx� y� � �b�x�Hy� �x� y � IRkg �
J �b� � fW � IRk�k j b�Wx� y� � b�x�Wy� �x� y � IRkg�

These are� respectively� the automorphism group� Lie algebra� and Jordan algebra of the
form b� It is now easy to see that H is just the Lie algebra L�b� and W the Jordan algebra
J �b� of the bilinear form b�x� y� � xTJy de�ned on IR�n by the matrix J �

�
� I
�I �

�
�

The eigenproblem for Hamiltonian matrices arises in a number of important applications�
and many algorithms for computing their eigenvalues and invariant subspaces have been
described in the literature �see ��� �� �
� for references�� In ����� Van Loan proposed a method
for calculating the eigenvalues of Hamiltonian matrices by �rst squaring them� Thus he was
led to consider the set

H� � fN � IR�n��n j N � H��H � Hg
of all squared�Hamiltonian matrices� The calculation

b�H�x� y� � �b�Hx�Hy� � b�x�H�y� �x� y � IR�n
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shows immediately that H� � W� �Indeed� the same argument shows that L��b� � J �b� for
any bilinear form b�� Almost all the algorithms proposed by Van Loan in ���� depend only
on the skewHamiltonian block structure of matrices in H�� and hence apply equally well to
every matrix in W� It is then natural to wonder whether the sets H� and W might actually
be the same�

In this paper we show that indeed H� � W� or in other words� every real skew
Hamiltonian matrix has a real Hamiltonian square root� The proof occupies the next three
sections� after outlining the strategy of the proof in Section �� we focus in Sections � and
� on the main technical result of this paper� a symplectic canonical form for real skew
Hamiltonian matrices� Then in Section � we consider the square root sets themselves� for a
general W � W � what can be said about the size and topological nature of the set of all the
real Hamiltonian square roots ofW � We close in Section � with results on related structured
square root problems involving complex Hamiltonian and skewHamiltonian matrices�

� The Generic Case

We begin by giving a short proof that almost all real skewHamiltonian matrices �i�e�� all
matrices in an open dense subset ofW� have a real Hamiltonian square root� This preliminary
result serves to make the general case more plausible� and at the same time allows us to
introduce the basic elements and strategy of the general proof in a setting where there are
no technical details to obscure the main line of the argument�

An important way to exploit the structure of Hamiltonian and skewHamiltonian matri
ces is to use only structurepreserving similarities� To that end consider the set S of real
symplectic matrices de�ned by

S �� fS � IR�n��n j STJS � Jg�
Equivalently� S is the automorphism group of the bilinear form de�ned by J � It is well
known and easy to show from either de�nition that S forms a multiplicative group� and that
symplectic similarities preserve Hamiltonian� squaredHamiltonian and skewHamiltonian
structure� for any S � S �

H � H �� S��HS � H�
N � H� �� S��NS � H��

W � W �� S��WS � W�

The �rst simplifying reduction we use was introduced by Van Loan in ����� There he
showed that any skewHamiltonianW can be brought to blockuppertriangular form by an
orthogonalsymplectic similarity� That is� for any W � W one can explicitly compute an
orthogonalsymplectic Q such that

QTWQ �

�
U R
	 UT

�
� where U�R � IRn�n � ���

Van Loan actually shows that one can attain an upper Hessenberg U with an orthogonal
symplectic similarity� however� this extra structure will play no role in this paper�
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Now suppose we could somehow continue this reduction by �not necessarily orthogonal�
symplectic similarities all the way to blockdiagonal form� Then the following proposition
shows that we would be done�

Proposition � Suppose for W � W there exists some S � S such that

S��WS �

�
A 	
	 AT

�
with A � IRn�n� Then W has a real Hamiltonian square root�

Proof � Every A � IRn�n can be expressed as a product A � FG of two real symmetric�

matrices F and G ��� ��� ��� ���� Consequently any blockdiagonal skewHamiltonian matrix�
A �
� AT

�
has a Hamiltonian square root of the form � � F

G � �� Then

W � S

�
A 	
	 AT

�
S�� � S

�
	 F
G 	

��
S�� �

�
S

�
	 F
G 	

�
S��

��

expresses W as the square of the Hamiltonian matrix S � � F
G � �S

��� �

Is there any reason to believe that such a symplectic blockdiagonalization can be achieved
for every skewHamiltonian matrix� In the special case of �� � matrices it has been shown
using quaternions that every �� � skewHamiltonian can be blockdiagonalized in the sense
of Proposition �� and this can even be done by an orthogonalsymplectic similarity ���� Thus
every ��� skewHamiltonian has a Hamiltonian square root� For larger matrices it is still not
clear whether blockdiagonalization is always possible via orthogonalsymplectic similarity�
so we turn next to see what can be achieved with nonorthogonal symplectic similarities�

To continue moving forward from Van Loan�s blockuppertriangular form towards block
diagonal form� we try using similarities by blockuppertriangular symplectics� One can verify
directly from the de�nition that a blockuppertriangular matrix � V X

� Y � with V�X� Y � IRn�n

is symplectic i� V is invertible� Y � V �T � and V ��X is symmetric� The two simplest types
of blockuppertriangular symplectics� then� are the blockdiagonal symplectics

�
V �
� V�T

�
� and

the symplectic shears � I X� I � with I � IRn�n and XT � X� We will see that one can go quite
a long way using just these two special types of �nonorthogonal� symplectic matrices��

Now consider the set M of all �n � �n skewHamiltonian matrices whose eigenvalues
each have multiplicity exactly two� From the Van Loan reduction ��� it is clear that any
eigenvalue of a skewHamiltonian matrix must have even multiplicity� soM consists precisely
of those matrices in W whose eigenvalues are of minimal multiplicity� Thus M � W can
be viewed as the natural skewHamiltonian analog of the subset of matrices in IR�n��n with
distinct eigenvalues� it should then not be surprising that M is a dense open subset of W
with complementW nM of measure zero� In this sense� we may regard M as the �generic�
skewHamiltonian matrices� The next proposition shows that the simple tools introduced so
far are already su�cient to symplectically blockdiagonalize any skewHamiltonian matrix
in M�

�Either one of the matrices F or G may also be chosen to be nonsingular� This extra property is not
needed here� but plays an important role later in the proof of Theorem ��

�Every block�upper�triangular symplectic can be uniquely expressed as the product of a block�diagonal
symplectic and a symplectic shear� although we make no use of this fact here�
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Proposition � For any W � M there exists an S � S such that

S��WS �

�
A 	
	 AT

�
with A � IRn�n�

Proof� A sequence of three symplectic similarities reduces any W � M to blockdiagonal
form� First do Van Loan�s reduction� constructing S� � S so that S��� WS� �

�
U R
� UT

�
�

The assumption W � M means that U � IRn�n has n distinct eigenvalues� Next perform
a similarity by a blockdiagonal symplectic S� �

�
V �
� V �T

�
� choosing V � IRn�n so that

V ��UV � A is in real Jordan form� This gives

S��� S��� WS�S� �

�
A K
	 AT

�
�

with K � V ��RV �T � The blockdiagonalization of W is completed by similarity with a
symplectic shear S� � � I X� I �� We have

S��� S��� S��� WS�S�S� �

�
A AX �XAT �K
	 AT

�
�

All that remains� then� is to show that for any skewsymmetric K one can always �nd a
symmetric solution X to the Sylvester equation

AX �XAT � �K� ���

Using such a solution X in the shear S�� we will have S��WS �
�
A �
� AT

�
with S � S�S�S��

and the proposition will be proved�
In solving ��� we can make use of the following wellknown and fundamental fact about

Sylvester equations of the form AX �XB � Y � where A � IRk�k� B � IR��� and Y � IRk���
whenever the spectra of A and B are disjoint� then the equation AX � XB � Y has a
unique solution X � IRk�� for any Y � IRk�� �see Proposition � in x����� To bring this result
into play to solve ���� partition A�X� and K into blocks compatible with the blockdiagonal
structure of A� Since A is the real Jordan form of a matrix with distinct eigenvalues� we can
write A � A�� � A�� � � � ��Amm where each Aii is � � � or � � �� and any � � � diagonal
block Aii has the form

�
a �b
b a

�
with b �� 	�

With X and K partitioned conformally with A� observe that the ijth block of AX�XAT

depends only on the ijth block of X �

�AX �XAT �ij � AiiXij �XijA
T
jj� i� j � �� �� � � � �m�

Thus the equationAX�XAT � �K decomposes blockwise intom� independent subproblems

AiiXij �XijA
T
jj � �Kij� i� j � �� �� � � � �m� ���

Among the diagonalblock subproblems �i � j� there are two cases to consider� Whenever
Aii is �� � � equation ��� collapses to a scalar equation and any real Xii is a solution� When
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Aii is � � �� equation ��� can be solved by a simple computation� Let Aii �
�
a �b
b a

�
with

b �� 	� Xii � � x y
y z �� and �Kii �

�
� �k
k �

�
� Then

AiiXii �XiiA
T
ii � b

�
	 �x� z

x� z 	

�
�

so x � k�b together with y � z � 	 provides one of many possible symmetric solutions Xii�
For each of the o�diagonalblock subproblems �i �� j� the above fundamental fact guarantees
the existence of a unique solution Xij to ���� Taking transpose of both sides of ��� shows
that these blockwise solutions satisfy Xji � XT

ij � and thus �t together compatibly to form a
symmetric solution X for ���� �

remarks

�� This proof highlights the importance of the solvability of various types of Sylvester
equations� especially

AX �XAT � Y � ���

for the symplectic blockdiagonalization problem� By extending the argument used
above� we will see in the next section how to characterize the set of matrices A for
which ��� has a symmetric solution X for every skewsymmetric Y � As one might
guess from Proposition �� among such A�s are all matrices with distinct eigenvalues�
The counterexample A � I suggests that multiple eigenvalues cause di�culties� but
that is not always the case� It turns out that the problem is not multiple eigenvalues
per se� but rather multiple Jordan blocks �see Proposition � in x�����

�� In light of the �rst remark� we can now see that the second step of the above reduction
to blockdiagonal form �similarity by the blockdiagonal symplectic S�� is unnecessary�
For matrices inM� one can always go directly from the Van Loan reduced form

�
U R
� UT

�
to blockdiagonal form

�
U �
� UT

�
via similarity by some symplectic shear � I Z

� I �� Such a
similarity leads to the equation UZ � ZUT �R � 	 where U has distinct eigenvalues�
so it will have a symmetric solution Z for any skewsymmetric R� With V and X
de�ned as in the proof of Proposition �� the matrix Z � V XV T is one such solution�
although there are many others �in fact there is a whole ndimensional a�ne subspace
of symmetric solutions��

Now that we know that H� contains an open dense subset of W � it is natural to consider
trying the usual kind of analytic argument to complete the proof that H� � W� That is�
we could approximate an arbitrary skewHamiltonian W by a sequence Wi �	 W with
Wi � M� pick Hamiltonian square roots Hi for each Wi by Proposition �� and then try to
show that the set fHig has some limit point H� Any such H would be a Hamiltonian square
root of W � Now even though each Wi � M has in�nitely many Hamiltonian square roots� it
is not immediately evident that one can always choose theHi so as to guarantee the existence
of any limit points at all for fHig� Instead of pursuing this analytic line of attack� we will
continue with a more algebraic approach� showing that the symplectic blockdiagonalization
result of Proposition � can be extended to all of W� Indeed we will prove the following
canonical form result� which may itself be of some independent interest�
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Theorem � Every real skew�Hamiltonian matrix can be brought into �skew�Hamiltonian
Jordan form� via symplectic similarity� That is� for any W � W there exists an S � S such
that

S��WS �

�
A 	
	 AT

�
�

where A � IRn�n is in real Jordan form� The matrix A is unique up to a permutation of
�real� Jordan blocks�

As an immediate corollary we then have

Theorem � Every real skew�Hamiltonian matrix has a real Hamiltonian square root� In
other words� H� �W�

The main goal of the next two sections of the paper is to prove Theorem �� Unfortunately�
the potential presence of nontrivial Jordan structure in the general skewHamiltonian ma
trix introduces di�culties which cannot be handled using only symplectic shears� although
they still have an important role to play� We begin with some technical results concern
ing the detection and manipulation of Jordan structure� and further results about Sylvester
equations�

� Auxiliary Results

��� Sylvester Equations

In the proof of Proposition � we have seen that the e�ect of similarity by a symplectic shear
on a blockuppertriangular skewHamiltonian matrix is simply to replace the ��� �� block K
by the expression AX �XAT �K��

I X
	 I

��� �
A K
	 AT

� �
I X
	 I

�
�

�
A AX �XAT �K
	 AT

�
�

It is important for the symplectic reduction of general skewHamiltonian matrices to struc
tured Jordan form to �nd out how far it is possible to simplify various types of such matrix
expressions� These simpli�cation questions can be concisely expressed in terms of the corre
sponding �Sylvester operators�� so let us introduce the following notation� Suppose A � F k�k

and B � F ��� are �xed but arbitrary square matrices with entries in the �eld F � Then we
denote by Syl�A�B� the linear Sylvester operator

Syl�A�B� � F k�� �	 F k��

X 
	 AX �XB�

In this section we characterize the range of several types of such operators� beginning with
a wellknown result referred to earlier in the proof of Proposition �� Knowing the range of
an operator Syl�A�B� enables us immediately to see how much it is possible to simplify the
�Sylvester expression� AX �XB � Y for an arbitrary Y �
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Although the proof of Theorem � involves only real Sylvester operators and the simpli
�cation of their associated Sylvester expressions� it is often convenient to prove results �rst
for complex operators and then derive the real case from the complex case� Much of this
section follows that pattern� In order to proceed directly to our main result in x�� the proofs
of Propositions �� � and � will be deferred to an appendix� We use F here to denote C or IR�

Proposition � Let A � F k�k and B � F ���� Then the operator Syl�A�B� is nonsingular
i	 the spectra ��A� and ��B� are disjoint subsets of C�

Proof� Proofs of this result for F � C can be found in many places� e�g� ��� �	� ��� ���
��� ���� When A and B are real� T � Syl�A�B� may be viewed either as a real operator TR
or as a complex operator TC � Since TC is the �complexi�cation� of TR ���� ��� ���� we have
dimC �kerTC� � dimR�kerTR�� Thus TR is nonsingular i� TC is nonsingular� �

Next we characterize the range of one of the simplest types of singular Sylvester operator

with ��A� � ��B�� Let Nk denote the k � k nilpotent matrix

����	
	 �

� � �
� � �
� � � �

	


���� � and
Mk��� � �Ik � Nk denote the k � k Jordan block corresponding to the eigenvalue �� We
also need the notion of the mth antidiagonal of a matrix Y � F k��� by which is meant the
set of all entries Yij such that i � j � � � m� Note that a k � � matrix Y has a total of

k � � � � antidiagonals� Since the collection of the mth antidiagonals of Y � F k�� with
m � k� �� � � k� �� � � � � � � k� �� d plays a particularly important role in the following
result� we refer to this collection as the last d antidiagonals of Y �

Proposition � Consider the operator Syl�A�BT �� where A � Mk��� and B � M���� are
Jordan blocks corresponding to the same eigenvalue � � F � Let d � min�k� ��� Then the
range of Syl�A�BT � consists of all Y � F k�� such that the sum of the entries along each of
the last d antidiagonals of Y is zero� Thus dimF �range Syl�A�BT�� � k�� d�

Many of the Sylvester expressions AX � XB � Y arising in the proof of Theorem �
require simpli�cation with a symmetric X� not just with an arbitrary unstructured X� This
is because shears � I X

� I � are symplectic i� X is symmetric� We address this situation in the
next proposition� But �rst a little more notation� let FSym�n� and FSkew�n� denote the
sets of all matrices X � F n�n such that XT � X and XT � �X� respectively� Also recall
that a matrix A � F n�n is said to be nonderogatory ���� if the complex Jordan form of A
has exactly one Jordan block for each eigenvalue�

Proposition � For A � F n�n� consider the operator Syl�A�AT� with domain and codomain
restricted to FSym�n� and FSkew�n�� respectively� That is� consider

TA � FSym�n� �	 FSkew�n�

X 
	 AX �XAT �

Then TA is onto �� A is nonderogatory�
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The �nal result we need is the real analog of Proposition � for complexconjugate eigen
value pairs� Our goal is to characterize the range of real operators Syl�A�BT� � IR�k��� 	
IR�k��� in completely real terms� when A and B are real Jordan blocks corresponding to
the same complexconjugate eigenvalue pair� To achieve this� we need some preliminary
de�nitions and simple facts about real � � � matrices and their relations to complex � � �
matrices�

Consider the centralizer C� and anticentralizer A� of J � � � ��� � � de�ned by

C� � fX � IR��� j JX � XJg � f� a �b
b a

� j a� b � IRg
and A� � fX � IR��� j JX � �XJg � f� c d

d �c
� j c� d � IRg�

Then the following lemma is straightforward to prove�

Lemma �


� IR��� � C� �A��

�� Every matrix in C� is diagonalized by similarity with the unitary matrix �� �
�p
�
� � �
�i i ��

That is� �H
�

�
a �b
b a

�
�� �

�
a�ib �
� a�ib

�
�

�� Every matrix in A� is �anti�diagonalized� by similarity with ��� That is� �H
�

�
c d
d �c

�
�� ��

� c�id
c�id �

�
�

� The set U� � f� u v
�v �u � j u� v � Cg is a �real� subalgebra of C���� and the map

IR��� ���	 U�
X 
	 �H

� X��

is an algebra isomorphism�

With these facts in hand we can now prove the following proposition�

Proposition 	 Consider the operator Syl�A�BT�� where A � IR�k��k and B � IR����� are
both real Jordan blocks corresponding to the same complex�conjugate eigenvalue pair a� ib�
That is� both A and B are of the form����	

� I�
� � � � � �

� � � I�
�


���� � where � �

�
a �b
b a

�
with b �� 	� ���

The range of Syl�A�BT� can be characterized as follows� Let d � min�k� ��� Partition

Y � IR�k��� into blocks Yij � IR��� so that Y �

��	 Y��    Y��
���

���
Yk�    Yk�


�� � Let the set of all �� �

blocks Yij such that i�j�� � m be called the mth block�antidiagonal of Y � Then the range of
Syl�A�BT � consists of all Y � IR�k��� such that the sum of the A��components of the blocks
along each of the last d block�antidiagonals of Y is � � �

� � � �






From the above characterizations of the ranges of Sylvester operators� we can now see
exactly how much it is possible to simplify the four types of Sylvester expressionAX�XB�Y
appearing in the proof of Theorem �� Each simpli�cation result is an immediate consequence
of the indicated proposition�

Proposition 


�a� Suppose A � IRk�k and B � IR��� have disjoint spectra� Then for any Y � IRk�� there
exists �a unique� X � IRk�� such that AX �XB � Y � 	� �Proposition ��

�b� Suppose A � IRk�k is a real Jordan block corresponding to either a real eigenvalue or a
complex�conjugate eigenvalue pair� Then for any skew�symmetric Y � IRk�k there exist
�in�nitely many� symmetric X � IRk�k such that AX�XAT �Y � 	� �Proposition ��

�c� Suppose A � IRk�k and B � IR��� are Jordan blocks corresponding to the same real
eigenvalue� Let d � min�k� ��� Then for any Y � IRk�� there exist �in�nitely many�
X � IRk�� such that AX �XBT � Y is zero everywhere except possibly in the last d
entries of the bottom row� �Proposition �

�d� Suppose A � IR�k��k and B � IR����� are real Jordan blocks corresponding to the same
complex�conjugate eigenvalue pair� Let d � min�k� ��� Then for any Y � IR�k��� there
exist �in�nitely many� X � IR�k��� such that AX�XBT �Y is zero everywhere except
possibly in the last d �� � ���blocks of the bottom row� These last d �� � ���blocks are
all elements of A�� �Proposition ��

��� Jordan Structure

An important step in the proof of Theorem � concerns certain blockdiagonal matrices B
and perturbations eB � B �Cp that di�er from each other only in a single column of blocks�

We need to compare the maximum Jordan block size of such pairs B and eB� The results in
this section address this question�

For a matrix A � Cn�n with eigenvalue �� it is wellknown ���� that the Jordan structure
of A corresponding to � can be deduced from the ranks of the powers of A� �I� That is� if
rk � rank�A � �I�k� then the number and sizes of all the Jordan blocks associated with �
are completely determined by the sequence of numbers r�� r��    � rn� For our purposes� we
need only the following basic result�

Proposition � Suppose A � Cn�n is a matrix with exactly one eigenvalue �� Letting rk �
rank�A � �I�k� there is an integer s with 	 � s � n such that n � r� � r� �    � rs �
rs�� �    � rn � 	� The largest Jordan block of A has size s� s�

�	



Next consider matrices of the form������������	

B� F
B� �

� � �
���

Bp�� �
Bp

� Bp��
���

� � �

� Bq


������������
� B � Cp� ���

where B � diag�B�� B��    � Bq� � Cp is zero everywhere except possibly in the o�diagonal

blocks of the pth column of blocks� and � stands for an arbitrary matrix of the appropriate
size� Observe that if we �x the sizes of the diagonal blocks and the column p� then the set
of matrices of the form ��� is closed under multiplication� We have the following two results
for certain special matrices of this form�

Proposition � Suppose A � Cn�n is a matrix of the form ��� satisfying the following
conditions�


� Each Bk � Cnk�nk with k �� p is a Jordan block Mnk ��� corresponding to the same
eigenvalue �� Bp � Cnp�np is the transpose of a Jordan block corresponding to �� i�e�
Bp � MT

np
����

�� B� is the largest block on the diagonal of A� so that n� � nk for all k�

�� The non�zero o	�diagonal blocks are not in the �rst column� i�e� p � �� The top�
most block of the pth column of blocks� F � Cn��np � is of the form

�
�
f

�
where f �

�f�    fnp � � C��np is nonzero�

Then � is the only eigenvalue of A� and in the Jordan canonical form of A there is at least
one Jordan block with size bigger than n��n�� Hence the largest Jordan block of A is strictly
bigger than the largest Jordan block of B�

Proof� That � is the only eigenvalue of A follows immediately from partitioning A into
blockuppertriangular form A �

�
A�� A��
� A��

�
where A�� � diag�B�� B�   Bp���� In order

to establish the claim about Jordan block size� it su�ces �by Proposition �� to show that
rank�A� �I�n� � 	� or equivalently that �A� �I�n� �� 	� Thus we consider powers of

A� �I � diag�Nn
�
� Nn

�
  NT

np
  Nnq

� � Cp�

All powers �A��I�k are of the form ���� and for convenience we designate the topmost block
in the pth column of blocks of �A� �I�k by F �k	� Then it is easy to see inductively that

�A� �I�k �

�������	
Nk
n�

� � �

�NT
np
�k

� � �

Nk
nq


������� �

������	
	 F �k	

� � �
���
	
���

� � �

� 	


������ �

��



where F �k	 satis�es the recurrence

F �k	 � Nk��
n
�
F ��	 � F �k��	NT

np
� F ��	 � F�

From this recurrence we deduce that

F �n
�
	 �

����	
f�    fnp
���

���

fnp
	�n

�
�np	�np


����
is a Hankel matrix with f as the top row� Since f is nonzero� so is F �n

�
	 and hence also

�A� �I�n� � �

To complete this section we establish a real analog of Proposition 
 for matrices of the
form ��� where each Bk is a real Jordan block corresponding to the same complexconjugate
eigenvalue pair� We employ the same sort of strategy as in the proof of Proposition ��
�rst convert the real Jordan blocks to complex Jordan blocks by an appropriate similarity�
then apply Proposition 
 to the resulting complex matrix� and �nally translate back into
completely real terms�

Proposition � Suppose L � IR�n��n is a matrix of the form ��� satisfying the following
conditions�


� Each Bk � IR�nk��nk with k �� p is a real Jordan block corresponding to the complex�
conjugate eigenvalue pair ��� �� � �a� ib� a� ib�� Bp � IR�np��np is the transpose of a
real Jordan block corresponding to ��� ��� In other words� BT

p and Bk with k �� p have
the form ��� as described in Proposition ��

�� B� � IR�n���n� is the largest block on the diagonal of L� so n� � nk for all k�

�� The non�zero o	�diagonal blocks are not in the �rst column� i�e� p � �� When each
block in the pth column of Cp is partitioned into �� � �� sub�blocks� then every such

�� � �� sub�block is an element of A�� The topmost block of the pth column of blocks�
F � IR �n���np � has the form

�
�
g

�
where g � �g�    gnp � � IR���np is nonzero and

gi � A� for � � i � np�

Then � and � are the only eigenvalues of L� and in the real Jordan canonical form of L
there is at least one real Jordan block with size bigger than �n� � �n�� Hence the largest real
Jordan block of L is strictly bigger than the largest real Jordan block of B�

Proof� Recall the unitary matrix ��n � ��nP�n de�ned in the proof of Proposition ��
From the discussion there of the e�ect of similarity by ��n on real matrices� we see thatbL � �H

�n L��n will be of the form
�
U V
V U

�
with U� V � Cn�n� More speci�cally�

U � diag�Mn
�
�Mn

�
  M T

np
  Mnq

�

��



where Mnk � Mnk ��� denotes the nk � nk Jordan block for � � a � ib� The matrix V �
partitioned conformally with U � has nonzero entries only in the o�diagonal blocks of the
pth column of blocks� i�e�

V �

��������	

	 bF
	 �

� � �
���
	
���

� � �

� 	


��������
�

The topmost block bF � Cn��np of this pth column has the form
h
�
bf

i
where bf � �bf�    bfnp � �

C��np is nonzero�
A �nal permutation similarity shifts these nonzero blocks of V into U � and thus block

diagonalizes L� Letting P � �C S
S C �� with

C � diag�In�    Inp��� 	np � Inp��    Inq� and

S � diag�	n�    	np�� � Inp� 	np��    	nq � �
we have P T bLP �

�
A �
� A

�
� where

A �

���������	

Mn�
bF

Mn� �
� � �

���
MT

np
���

� � �

� Mnq


���������
is exactly the type of matrix considered in Proposition 
� Thus A and A have only the
eigenvalues � and �� respectively� and each has at least one Jordan block bigger than n��n��
Consequently L has only the eigenvalues � and �� and at least one real Jordan block bigger
than �n� � �n�� �

� Skew�Hamiltonian Jordan Form

The results of x� provide us with all the technical tools needed to show that every real skew
Hamiltonian matrix can be symplectically brought into structured real Jordan form� This is
the content of Theorem �� which we recall now and prove�

Theorem � For any W � W there exists an S � S such that

S��WS �

�
A 	
	 AT

�
�

where A � IRn�n is in real Jordan form� The matrix A is unique up to a permutation of
�real� Jordan blocks�

��



Proof� Begin as in Proposition � with Van Loan�s reduction� constructing an orthogonal
symplectic S� � S so that S��� WS� �

�
U R
� UT

�
� Next perform a similarity with a block

diagonal symplectic S� �
�
V �
� V�T

�
� where V � IRn�n is chosen so that V ��UV � D is in

real Jordan form� Then we have S��� S��� WS�S� �
�
D K
� DT

�
� where K � V ��RV �T � We will

assume that the real Jordan blocks of D corresponding to the same real eigenvalue �or to
the same complexconjugate eigenvalue pair� have all been grouped together into blocks Bi �
that is� we can write D � diag�B�� B�   B��� where

�i� the spectrum of each Bi is either a single real number or a single complexconjugate
pair� and

�ii� distinct blocks Bi and Bj have disjoint spectra�

With a symplectic shear � I X
� I � we can now blockdiagonalize K� Recall that the e�ect

of similarity by a symplectic shear on a blockuppertriangular skewHamiltonian matrix�
D K
� DT

�
is simply to replace K by the expression DX � XDT � K� Thus we wish to �nd

a symmetric X so that DX �XDT �K is a blockdiagonal matrix conformal with D� To
build such an X� start by partitioning K and X into blocks conformal with the direct
sum decomposition D � B� � B� �    � B�� The blockdiagonal nature of D means that
DX �XDT �K may be handled blockwise�

�DX �XDT �K�ij � BiXij �XijB
T
j �Kij � � � i� j � ��

Since Bi and Bj have disjoint spectra for any i �� j� we know from Proposition �a that

there is a unique eXij such that Bi
eXij � eXijB

T
j � Kij � 	� Transposing this equation and

invoking the skewsymmetry of K �i�e� KT
ij � �Kji� shows that eXji � eXT

ij � Letting eXii � 	

for � � i � �� we see that the blocks eXij �t together to form a symmetric matrix eX� The
corresponding symplectic shear S� �

�
I eX
� I

�
gives us

S��� S��� S��� WS�S�S� �

�
D Kdiag

	 DT

�
�

where Kdiag � diag�K���K��   K���� The problem of symplectically blockdiagonalizing an
arbitrary real skewHamiltonian is thus reduced to that of symplectically blockdiagonalizing

�degenerate� skewHamiltonian matrices
h
Bi Kii

� BT
i

i
� that is skewHamiltonian matrices whose

spectrum consists either of a single real number �type �� or a single complexconjugate pair
�type ���

Up to this point� the proof of Theorem � is essentially the same as the proof of Proposi
tion �� In the generic class M of skewHamiltonians considered in Proposition �� however�
theBi were only ��� or ��� blocks� and the corresponding degenerate subproblems could be
handled directly and explicitly in an elementary manner� It is in blockdiagonalizing larger
degenerate subproblems that the chief technical di�culty of the general case lies� Symplectic
shears alone cannot in general be su�cient for this task� because the real Jordan structure

of
h
Bi Kii

� BT
i

i
may di�er from that of

h
Bi �
� BT

i

i
� This is where the results of x� come into play�

To complete the proof of Theorem � we describe an iterative procedure� terminating in a
�nite number of steps� which brings any degenerate skewHamiltonian matrix into structured

��



skewHamiltonian Jordan form� We concentrate on the type � case� matrices with a single
complexconjugate eigenvalue pair ��� ��� It is easy to see that the following argument
will also work for the type � case� simply by replacing Proposition �d with Proposition �c�
and Proposition �	 with Proposition 
� Let us suppose� then� that

�
B K
� BT

�
is a degenerate

skewHamiltonian matrix where B � diag�A�� A�   Aq� is in real Jordan form� Each Ak �
IR�nk��nk is a real Jordan block of the form ���� and A� is the largest such block�

We begin with the termination case for this procedure� When B has only one real Jordan
block� then blockdiagonalization can be achieved in one step� By Proposition �b there exists
a symmetric X such that BX � XBT � K � 	� Thus similarity by the symplectic shear
� I X� I � using this X transforms

�
B K
� BT

�
into

�
B �
� BT

�
� and we are done�

Now suppose that B has more than one Jordan block� We de�ne a twostep reduction
process to simplify

�
B K
� BT

�
� not necessarily all the way to blockdiagonal form� but at least

bringing it closer to structured Jordan form�

STEP �� �Simpli�cation of K�
Here we simplify K as much as possible using only a symplectic shear � I X

� I ��
Begin by partitioning K and X conformally with the real Jordan decomposition
of B� Now simplify K blockwise� replacing each block Kij by the expression
AiXij �XijA

T
j �Kij � Yij� where Xij is chosen to produce a Yij with as many

zeroes as possible� By Proposition �b each block Kii on the diagonal of K can
be zeroed out completely� In general the o�diagonal blocks Kij �i �� j� cannot
be completely zeroed out in this way� but Proposition �d shows what we can
be sure of achieving� For blocks Kij above the diagonal �i � j� choose Xij so
that all entries are zeroed out except possibly for the last d �� � �� blocks of
the bottom row� In other words� each Yij with i � j has the form Yij �

�
�
g

�
where g � �g��    gnj � � IR���nj and gi � A� for � � i � nj� For blocks Kji

below the diagonal �j � i� we choose Xji � XT
ij so that X will be symmetric and

Yji � �Y T
ij � This zeroes out all entries of each Kji �j � i� except possibly for the

bottom d �� � �� blocks of the last column� Note that these �� � �� blocks are
also elements of A�� since any gi � A� is symmetric� Thus we simplify

�
B K
� BT

�
to�

B Y
� BT

�
via similarity by the symplectic shear � I X� I �� where Y has the form

Y �

�������	

	 Y��       Y�q

�Y T
�� 	

���
���

� � �
���

��� 	 Yq���q
�Y T

�q       �Y T
q���q 	


������� �

STEP �� �Transfer of Jordan structure�
If all the blocks Y��   Y�q in the �rst row of Y �and hence also all the blocks
in the �rst column of Y � are zero� then we can de!ate to a smaller degenerate

��



skewHamiltonian
h
eB eK

� eBT

i
� where eB � diag�A�   Aq� and

eK �

����	
	 Y��    Y�q

�Y T
�� 	

���
���

� � �
���

�Y T
�q       	


���� �
Otherwise there is some block Y�p in the �rst row of Y that is nonzero� By
a permutationlike symplectic similarity on

�
B Y
� BT

�
we can shift Y�p� indeed the

whole pth column of blocks� from Y into B� Let Q �
�
C �S
S C

�
� where

C � diag�I�n�    I�np��� 	�np� I�np��    I�nq� and

S � diag�	�n�    	�np�� � I�np� 	�np��    	�nq� �

Then we have QT
�
B Y
� BT

�
Q �

h
L eY
� LT

i
� where

L �

��������	

A� Y�p
A� Y�p

� � �
���
AT
p
���

� � �

�Y T
pq Aq


��������
is exactly the type of matrix considered in Proposition �	� Consequently L has
only the eigenvalues � and �� and the largest real Jordan block of L is strictly
bigger than the largest real Jordan block of B� Roughly speaking� similarity
by Q has the e�ect of �transferring some Jordan structure� from Y into B�
To complete Step �� perform a similarity with the blockdiagonal symplectic
T �

�
Z �
� Z�T

�
� choosing Z so that Z��LZ � eB is in real Jordan form with the

largest real Jordan block in the ��� �� position�

The result of this twostep reduction process� then� is a matrix eB eK
	 eBT

�
� T��

�
L eY
	 LT

�
T

of the same form as the input
�
B K
� BT

�
to the twostep reduction process� but with the crucial

di�erence that the largest real Jordan block of eB is strictly bigger than the largest real
Jordan block of B�

Now repeat this twostep reduction process on
h
eB eK

� eBT

i
� After �nitely many iterations we

can either de!ate to a smaller degenerate skewHamiltonian� or we reach a stage where the
largest real Jordan block has grown in size to �ll all of eB� On any de!ated problem we again
iterate the twostep reduction� after �nitely many iterations we can either de!ate once more�

��



or the largest real Jordan block will have grown to �ll all of eB� Only �nitely many such
de!ations can occur� and ultimately we must reach the termination case� a eB with only one
real Jordan block� Blockdiagonalization is achieved in one �nal step as described above�

Thus we have shown that there exists a symplectic S such that S��WS �
�
A �
� AT

�
� with

A � IRn�n in real Jordan form� But any matrix A is similar to its transpose� so � A �
� A � must

be the �usual� real Jordan canonical form of W � The uniqueness of this Jordan form then
immediately implies the uniqueness of A� up to a permutation of Jordan blocks� �

� In�nitely Many Square Roots

With the completion of the proof of Theorem �� we know that every real skewHamiltonian
matrix W has at least one real Hamiltonian square root� Let us next consider the set
H
p
W � fH � H j H� � Wg of all the Hamiltonian square roots of W � and what can be

said about the size and topological nature of this set for various W � W� A closer look at
the proof of Theorem � shows that there are in�nitely many distinct symplectic similarities
bringing any given W � W into structured real Jordan form� Hence it is quite reasonable to
expect that every W � W actually has in�nitely many distinct Hamiltonian square roots�
Indeed� by sharpening the previous arguments we can obtain a uniform lower bound on the
size of the H

p
W sets� First we need one more result about Sylvester operators� strengthening

a theorem of Taussky and Zassenhaus ����� The proof will be deferred to the appendix�

Proposition �� Let A � IRn�n� and consider �as in Proposition �� the restricted domain
Sylvester operator

TA � IRSym�n� �	 IRSkew�n�

X 
	 AX �XAT �

Denote the set of all nonsingular matrices in kerTA by Inv�kerTA�� Then for any A � IRn�n�
Inv�kerTA� is a dense open submanifold of kerTA � thus dimInv�kerTA� � dimkerTA�

With this result in hand we can now establish the following lower bound on the size of
Hamiltonian square root sets�

Theorem � Every �n � �n real skew�Hamiltonian matrix W has at least a �n�parameter
family of real Hamiltonian square roots�

Proof� Pick any �xed S � S such that S��WS �
�
A �
� AT

�
is blockdiagonal� and factor

A as a product A � FG of n� n symmetric matrices F and G� Without loss of generality
we may also assume that G is nonsingular ��� ��� ���� Since in general there are many such
factorizations of A� let us introduce the set

G � fG � IRSym�n� j G is nonsingular� and F � AG�� is symmetricg�

Then as we have previously seen� HG � S � � F
G � � S

�� is a Hamiltonian square root of W for
any G � G�

��



To construct even more elements ofH
p
W fromHG� consider symplectic shears TX � � I X� I �

such that

T��X

�
A �
� AT

�
TX �

�
A �
� AT

�
� ���

De�ning X � fX � IRSym�n� j TX satis�es ���g� it is easy to see that X is just the subspace
kerTA � where TA is the operator considered in Proposition ��� Now insert a similarity by
any such TX into HG to de�ne

HG�X � S T��X � � F
G � �TX S

��� ���

Clearly HG�X is Hamiltonian and H�
G�X � W for every �G�X� � G � X � To see that these

matrices HG�X are all distinct� let �G��X�� and �G��X�� be ordered pairs from G�X � Then

HG��X�
� HG� �X�

�� S T��X�

�
� F�
G� �

�
TX�

S�� � S T��X�

�
� F�
G� �

�
TX�

S��

�� T��X�

�
� F�
G� �

�
TX�

� T��X�

�
� F�
G� �

�
TX�

�� ��X�G� F��X�G�X�

G� G�X�

�
�
��X�G� F��X�G�X�

G� G�X�

�
�� G� � G� and X� � X�� since G� � G� is nonsingular �

Thus HG��X�
and HG� �X�

are distinct whenever the pairs �G��X�� and �G��X�� are distinct�

so H
p
W contains a family fHG�Xg parametrized by G �X � All that remains is to bound the

sizes of G and X �
Since X � kerTA � we have dimX � n just from consideration of the dimensions of the

domain and codomain of TA � By contrast the set G is not a subspace� so a lower bound on
its dimension requires a bit more discussion� Observe that for any nonsingular symmetric
G�

AG�� � �AG���T �� AG�� �G��AT � 	 �� G�� � kerTA �

Thus G � G i� G�� � Inv�kerTA�� Now by Proposition �� Inv�kerTA� is a submanifold
with the same dimension as kerTA � But matrix inversion is a di�eomorphism of GLn�IR�
which maps G bijectively to Inv�kerTA�� so G must also be a submanifold with dimG �
dimInv�kerTA� � dimkerTA � Putting this all together� we have

dim
H
p
W � dim�G � X � � dimG � dimX � �dim�kerTA� � �n � �

The family fHG�Xg of Hamiltonian square roots constructed in Theorem � does not always
have dimension �n� In fact� since dimkerTA can be much larger than n� it is possible for
dimH

p
W to be much larger than �n� The most extreme example of this occurs for W � I�n�

where dimkerTIn � �
��n

� � n� so that dimH
p
I�n � n� � n� However� it is much more typical

that the lower bound dimH
p
W � �n is actually attained� The next proposition makes this

precise� using a standard argument from di�erential topology to show that H
p
W is exactly

�n dimensional for all but a measure zero subset of exceptional cases�

Proposition �� For almost all �n� �n real skew�Hamiltonian matrices W � i�e� for all but
a measure zero subset of W� the set H

p
W is a smooth �n�dimensional submanifold of H�

��



Proof� Consider the squaring map

f � H �	W
H 
	 H��

Clearly f is smooth� and the preimages f���W � are exactly the square root sets H
p
W � Now

for smooth maps� the Preimage Theorem ���� says that any nonempty preimage of a regular
value is a smooth submanifold of the domain� and the dimension of this submanifold is the
di�erence of the dimensions of the domain and codomain�� But the squaring map is onto
�by Theorem ��� so every preimage is nonempty� And by Sard�s Theorem ����� almost every
point in the codomain of a smooth map is a regular value� Thus we see that for almost every
skewHamiltonian matrix W � the set f���W � � H

p
W is a submanifold of H with

dim
H
p
W � dimH� dimW � ��n� � n�� ��n� � n� � �n� �

remarks

�� Sard�s theorem is completely nonconstructive� and in general gives no information
about which values of a smooth map are regular� However� the squaring map f is
simple enough that it is possible to explicitly characterize its regular values� and thus
give an explicit su�cient condition for H

p
W to be a �n dimensional submanifold� The

�rst step toward achieving this is to describe the set of regular points of f � i�e� to
�nd those H � H where the Fr"echet derivative �df�H is onto� But �df�H is precisely
the map Syl�H��H� � H 	 W � so we are back to the problem of deciding when
certain Sylvester operators are onto� By an appropriate change of coordinates �as
in the Appendix� one can transform this problem to the equivalent question of the
surjectivity of Syl�H�HT � � IRSym 	 IRSkew � exactly the situation considered in
Proposition �� Thus we may conclude that H � H is a regular point of f i� H is
nonderogatory� Now the regular values of f are by de�nition the matrices W � W
such that every H � f���W � is a regular point� so one might guess the regular values
to be exactly those W � W that are squares of nonderogatory H � H� equivalently
those W � W with the minimal number �two� of Jordan blocks for each eigenvalue�
This is almost but not quite correct� It is possible to show that W � W is a regular
value of f i� W has exactly two Jordan blocks for each eigenvalue� and the multiplicity
of the eigenvalue zero is not two�

�� The squaring map f is not just smooth� it�s a quadratic polynomial map in the entries
of H� Thus every preimage f���W � � H

p
W is an algebraic variety with dim � �n�

Proposition �� says that most of these varieties are actually smooth submanifolds with
dim � �n�

�� The existence of the family fHG�X j �G�X��G �Xg contained in any H
p
W enables us

to conclude that every H
p
W is unbounded� To see this� observe that G is unbounded�

since G�G � kG�G for all k �� 	� But similarity by any �xed S�S is a nonsingular
linear operator on H� so fHG��g � Sf � � AG��

G �

� j G�G gS�� must also be unbounded�

�The Preimage Theorem is also known as the Regular Value Theorem�

�




�� Matrices in H
p
W need not be symplectically similar� or even have the same Jordan

form� Examples of both situations can already be seen in the � � � case� J � � � ��� � �
and �J are elements of H

p�I that are not symplectically similar� although they do
have the same Jordan form� Square root sets H

p
W can contain matrices with distinct

Jordan forms only if W is singular� N� � � � �
� � � and � � �

� � � are both elements of H
p

� � �
� � ��

However� not every singular W exhibits this behavior� every element of H
rh

N� �
� NT

�

i
must have Jordan form N
�

�� Using the results of this section it is possible to construct explicit �nparameter families
of Hamiltonian square roots� at least for small n� As an illustration� consider W �h
N� �
� NT

�

i
� One easily �nds for A � N� � � � �

� � � that

X � kerTA �

��
c d
d 	

��
� and G �

�
�

b�

�
	 b
b �a

�
� b �� 	

�
�

Assembling these ingredients as in the proof of Theorem � yields the �parameter family

HG�X � H�a� b� c� d� �
�

b�

�BB�
�bd ad� bc b� � �bcd� ad� �bd�
	 �bd �bd� 	
	 b bd 	
b �a bc� ad bd

�CCA � b �� 	�

A direct computation shows that �H�a� b� c� d��� �W for every a� b� c� d � IR with b �� 	�

�� It is not di�cult to explicitly calculate H
p
W for any � � � skewHamiltonian matrix

W � W��� � f � k �
� k � j k � IR g� and also to see how these square root sets �t together

to partition the ��dimensional space H��� of all � � � Hamiltonian matrices� This is
shown in Figure �� which also nicely illustrates the �rst four remarks� In this �gure we
have identi�ed H��� with IR� using the isometry

H��� �	 IR�

� a b
c �a � 
	

p
�
� ��a� b� c� b� c��

The cone is exactly the set of all �� � nilpotent matrices� i�e�H
p

� � �
� � � � Each

H
p
kI with

k � 	 is a twosheeted hyperboloid intersecting the 	J�axis at �pjkj J � By contrast

every H
p
kI with k � 	 is a hyperboloid of one sheet�

It is also interesting to note the relation of real similarity and symplectic similarity
classes in H��� to these square root sets� Although it is not true for larger Hamiltonian
matrices� in H��� every H

p
W is a �nite union of similarity classes� For example� every

hyperboloidal H
p
W is just the intersection of some real similarity class in IR��� with

H���� Every onesheeted hyperboloid is also a symplectic similarity class� on the other
hand� each sheet of a twosheeted hyperboloid is a distinct symplectic similarity class�
By contrast� the cone C of �� � nilpotents is the union of three symplectic similarity
classes # the zero matrix  together with the two connected components C� and C�

of C n  � Although matrices in C� are not symplectically similar to those in C�� they
are real similar� so that C� �C� constitutes a single real similarity class in H���� Thus
C is the union of two real similarity classes�

�	
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Figure �� �� � Hamiltonian square root sets�

�� With the trivial exception of 	 � Hp	� none of the Hamiltonian square roots of any
skewHamiltonianW is a polynomial in W � The basic reason for this is the eigenvalue
structure of real Hamiltonian matrices� whenever � � C is an eigenvalue of H � H�
then so is �� ���� But distinct eigenvalues of a polynomial square root can not have
the same square� so the only way for H � H to be a polynomial square root of W is
to have only the eigenvalue zero� i�e� H and W must be nilpotent� Now it is easy to
see from the Jordan form that we can only have H � p�W � and H� � W if all of the
Jordan blocks are � � �� that is H � W � 	�

�� The characterization of the set G given in Theorem � and Proposition �� constitutes
an alternate proof of the twosymmetrics factorization theorem for real n�n matrices�
An important feature of this proof is that it goes beyond the mere existence of the
factorization to provide systematic �although not complete� information about the set
of all such factorizations�

� Complex Structured Square Roots

The notion of Hamiltonian and skewHamiltonian structure extends to complex matrices�
so it is natural to consider the question of the existence of structured square roots in these
complex classes� In this section we survey the various possibilities� beginning with some
de�nitions and simple properties�

Recall from x� and x� that S� H� and W can be viewed as the automorphism group� Lie
algebra� and Jordan algebra� respectively� of the bilinear form b�x� y� � xTJy de�ned on IR�n

��



by the �n��n matrix J �
�

� I
�I �

�
� This realbilinear form b�x� y� has unique extensions both

to a complexsesquilinear form� and to a complexbilinear form on C�n � To each of these
forms on C�n there is an associated automorphism group� Lie algebra� and Jordan algebra
of complex �n � �n matrices� Thus there are two natural but distinct ways of extending
the notions of real symplectic� Hamiltonian� and skewHamiltonian structure to complex
matrices� leading to the following de�nitions�

S �
C

� fS � C�n��n j S �JS � Jg �
H �
C

� fH � C�n��n j �JH� � � JHg �
W �
C

� fW � C�n��n j �JW � � � �JWg �

where � � � denotes either transpose � �T or conjugatetranspose � ��� The complexbilinear
extension of b leads to 
 being T � while the sesquilinear extension of b results in 
 being ��
We remark that the use of conjugatetranspose to de�ne complex symplectic� Hamiltonian�
and skewHamiltonian matrices seems to be standard in control theory ��� �
�� but using
transpose appears to be more typical in the study of Lie groups� representation theory� and
dynamical systems �
� ��� ���� The terms J orthogonal� J symmetric and J skewsymmetric
for ST

C
� HT

C
andWT

C
� and J unitary� J Hermitian and J skewHermitian for S�

C
� H�

C
andW�

C

are also commonly used ����
Characterizations of the block structure of matrices in H �

C
and W �

C
analogous to the

ones given for H and W in x� are easily obtained� For example� W � W�
C
i� W � � A B

C A� � �
where A � Cn�n is arbitrary but B�C � Cn�n are both skewHermitian� The following
simple properties of these classes of complex matrices are easy to check�

Lemma �

�a� H � H �
C
� and W � W �

C
�

�b� H� �W � W� � W � and �H �
C
�� � W �

C
� �W �

C
�� � W �

C
�

�c� S � S �
C
� H � H �

C
� W � W �

C
�� S��HS � H �

C
and S��WS � W �

C
�

�d� HT
C
and WT

C
are complex subspaces of C�n��n � while H�

C
and W�

C
are only real sub�

spaces� But we have i  H�
C
�W�

C
� and i  W�

C
� H�

C
�

From part �b� of this lemma it is clear that it only makes sense to look for structured square
roots �i�e�� square roots in H�W�H �

C
� or W �

C
� of matrices in W and W �

C
� Propositions ��

and �� settle the existence question for all possible cases�

Proposition �� The following table summarizes the existence of real and complex Hamil�
tonian and skew�Hamiltonian square roots when 
 is taken to be conjugate�transpose�

p
W � H �

p
W � H�

C
�

p
W � W �

p
W � W�

C
�

W � W �a�Always �b�Always �c� Sometimes �d�Always
W � W�

C
�e� Sometimes �f� Sometimes �g� Sometimes �h� Sometimes

��



Proof�

�a� This is Theorem ��

�b� Trivially true� since H � H�
C
�

�c� The following three conditions on matrices in W are equivalent�

�i� W � W has a U � W such that U� � W �

�ii� W � W is �real� symplectically similar to some blockdiagonal matrix
�
A �
� AT

�
such that A � IRn�n has a real square root�


�iii� For every blockdiagonal matrix
�
A �
� AT

�
that is �real� symplectically similar to

W � W� the matrix A � IRn�n has a real square root�

�i � ii�� By Theorem � we may symplectically blockdiagonalize U � so that
U � S

�
B �
� BT

�
S�� with B � IRn�n � Then

W � U� � S
�
B� �
� B�T

�
S�� � S

�
A �
� AT

�
S�� � with A � B� �

�ii � iii�� Suppose W is symplectically similar to
�
A �
� AT

�
with A � B� for some

B � IRn�n � and
h

bA �
� bAT

i
is any other blockdiagonal matrix inW symplectically similar

to W � Now both
�
A �
� AT

�
and

h
bA �
� bAT

i
can be brought into �skewHamiltonian Jordan

form� via similarity with blockdiagonal symplectics of the form
�
V �
� V �T

�
� But since

the skewHamiltonian Jordan form of W is essentially unique� we can conclude that A
and bA must be �real� similar to each other� Thus bA also has a real square root�

�iii� i�� By Theorem � we know that W � S
�
A �
� AT

�
S�� for some S � S and

A � IRn�n � and from condition �iii� we have A � B� for some B � IRn�n � Thus
W � U� for U � S

�
B �
� BT

�
S�� � W � �

Condition �iii� implies that W �
��� �

� ��
�
is a matrix in W with no square root in W�

�d� There are two simple ways to see this�

� First construct someH � HpW as in Proposition �� That is� letH � S � � F
G � � S

�� �
H be such that H� �W � Then fW � S

�
� iF
�iG �

�
S�� � W�

C � and fW � � W �

� Alternately� use Lemma �d� Pick any eH � Hp�W � Then fW � i  eH is in W�
C

andfW � � W �

�e� Clearly this is only true for W � W �W�
C
�

�Conditions for the existence of real square roots may be found in ��� and ����

��



�f� There are manymatrices inW�
C
with no square root inH�

C
� This fact can be established

by examining the possible arrangements in the complex plane of the eigenvalues of
matrices in W�

C
and H�

C
� It is well known that the spectra of matrices in H�

C
possess

a re!ection symmetry ��� ��� whenever � � C is an eigenvalue of H � H�
C
� then so

is �� � and both have the same multiplicity �indeed even the same Jordan structure��
A general H � H�

C
� then� has an even number of eigenvalues �counting multiplicity�

grouped in pairs symmetric with respect to the imaginary axis� and the rest of its
eigenvalues distributed arbitrarily on the imaginary axis� An analogous description for
matrices in W�

C
may also be given� Any W � W�

C
can be expressed as W � iH for

some H � H�
C
� so ��W � � i��H�� Thus a general W � W�

C
has an even number of its

eigenvalues grouped in complexconjugate pairs� with the remaining ones spread out on
the real axis without restriction� Now consider the square of any H � H�

C � From the
above we see that the eigenvalues of H� are just like those of matrices inW�

C �i�e� either
real or in complexconjugate pairs� except for one additional restriction # any positive
eigenvalue of H� must have even multiplicity� Thus the matrix Z � � � �i

��i � � � W�
C
�

with simple eigenvalues � and ��� cannot be the square of any H � H�
C
�

�g� Clearly a square root in W can exist only if W is real and the condition described in
part �c� is satis�ed�

�h� The same Z � � � �i
��i � � as used in part �f� also provides an example of a matrix inW�

C

with no square root in W�
C
� To see why this is so� consider the square of a general

W � W�
C
� SinceW can be written as W � iH for some H � H�

C
� we haveW � � �H� �

thus any negative eigenvalue ofW � must have even multiplicity� Consequently Z� with
a simple eigenvalue at ��� cannot be the square of any W � W�

C � �

The alert reader will have noticed that no complex analog of Theorem � for W�
C
played

any part in the discussion of Proposition ��� The reason is simple� no such result is true for
general matrices in W�

C � Consider� for example� the matrix U � � � i
� � � � W�

C � Since U has
Jordan form � � �

� � � � it cannot be brought in to the form � A �
� A� � by any similarity� let alone

by similarity with some matrix from S�
C
�

By contrast� the complex analog of Theorem � does hold for the class WT
C
� Indeed�

with only minor changes the very same proof given in this paper for real skewHamiltonian
matrices also yields the following theorem� The existence of this result for WT

C but not for
W�
C
accounts for much of the di�erence between Propositions �� and ���

Theorem � For any W � WT
C
there exists an S � ST

C
such that

S��WS �

�
A 	
	 AT

�
�

where A � Cn�n is in Jordan canonical form� The matrix A is unique up to a permutation
of Jordan blocks�

Proposition �� The following table summarizes the existence of real and complex Hamil�
tonian and skew�Hamiltonian square roots when 
 is taken to be transpose�

��



p
W � H �

p
W � HT

C �
p
W � W �

p
W � WT

C �
W � W �a�Always �b�Always �c� Sometimes �d� Sometimes
W � WT

C �e� Sometimes �f�Always �g� Sometimes �h� Sometimes

Proof�

�a�c� These are the same as parts �a� and �c� of Proposition ���

�b� Trivially true� since H � HT
C
�

�d� This case is covered by the discussion in part �h� below�

�e� Clearly this is only true for W � W �WT
C �

�f� The argument used in Proposition � and Theorem � to show that every real skew
Hamiltonian matrix has a real Hamiltonian square root works equally well here to show
that every W � WT

C has a square root in HT
C � By Theorem �� there is an S � STC

such that S��WS �
�
A �
� AT

�
� where A � Cn�n � But any complex A can be factored as

the product A � FG of two complexsymmetric matrices F�G � Cn�n ��� ���� so that
� � F
G � � � HT

C
and � � F

G � �
� �

�
A �
� AT

�
� Thus S � � F

G � �S
�� � HT

C
is a square root of W �

�g� Clearly a square root in W can exist only if W is real and the conditions described in
part�c� of Proposition �� are satis�ed�

�h� Using Theorem �� the argument in Proposition ��c can be trivially modi�ed to show
that the following three conditions on matrices in WT

C
are equivalent�

�i� W � WT
C has a U � WT

C such that U� � W �

�ii� W � WT
C is similar �via a matrix in STC � to some blockdiagonal matrix

�
A �
� AT

�
such that A � Cn�n has a �complex� square root��

�iii� For every blockdiagonal matrix
�
A �
� AT

�
that is similar to W � WT

C via some
matrix in ST

C
� the matrix A � Cn�n has a �complex� square root�

The equivalence of these conditions implies that the �� � matrix W �
h
N� �
� N�

T

i
� W

�seen earlier in remarks � and � of x�� has no square root in WT
C
� although it does

have in�nitely many square roots in W�
C
�

	 Conclusions

This paper has addressed the theoretical aspects of the Hamiltonian$skewHamiltonian struc
tured square root problem� We have settled the existence question # every real skew
Hamiltonian matrix has a real Hamiltonian square root� Furthermore� we have shown that
for any �n� �n real skewHamiltonianW � the set H

p
W of all real Hamiltonian square roots

of W is an unbounded algebraic variety with dimension at least �n� In fact H
p
W is a smooth

�Conditions for the existence of complex square roots may be found in ��� and ����

��



manifold of dimension exactly �n for almost every W � The existence question for various
types of complex structured square roots of complex Hamiltonian and skewHamiltonian
matrices has also been resolved�

We emphasize the main technical result of this paper� which may be of signi�cant inde
pendent interest� every real skewHamiltonian matrix may be brought into structured real
Jordan canonical form via real symplectic similarity� It is natural to ask whether there is an
analogous structured canonical form for real Hamiltonian matrices� This question has been
recently settled ��	�� but the canonical form is considerably more complicated and is usually
not block triangular�

Finally� the problem of �nding good numerical methods to compute Hamiltonian square
roots for general skewHamiltonian matrices remains open� Clearly a Schurlike method
involving Van Loan�s reduction� Sylvester equations� and matrix inversion can be developed
�see Remark � following Proposition �� and the proof of Theorem ��� but such a method
can only be applied in the generic case� Alternatively� one might consider iterative methods
as in ����� Unfortunately� all current iterative methods compute only square roots that are
polynomials in the original matrix� and no nonzero Hamiltonian square root of any W � W
is a polynomial in W � Consequently the outlook for �nding any structurepreserving matrix
iteration to compute Hamiltonian square roots appears less than promising� We are currently
exploring ways to overcome these di�culties�

Acknowledgements We thank Nick Higham� Volker Mehrmann� Charlie Van Loan�
and YiehHei Wan for helpful discussions and comments on various aspects of this paper�


 Appendix

In this appendix we present proofs for Propositions �� � and � from x��� and for Proposition
�� from x�� In each of these proofs we make use of the following wellknown technique of
�change of coordinates� between Sylvester operators ����� Let A � F k�k and B � F ��� be
�xed but arbitrary� Then for any invertible matrices U � F k�k and Z � F ��� we have�

AX �XB � Y �� U�AX �XB�Z � UY Z

�� �UAU����UXZ� � �UXZ��Z��BZ� � UY Z �

In other words the following diagram commutes�

F k�� Syl�A�B	���������������	 F k��

X ��UXZ

��y�� ��
��yY ��UY Z

F k�� Syl�UAU��� Z��BZ	���������������	 F k�� �

�
�

Thus the kernels and ranges of Syl�A�B� and Syl�UAU��� Z��BZ� are simply related�

kerSyl�UAU��� Z��BZ� � U�ker Syl�A�B��Z ��	�

range Syl�UAU��� Z��BZ� � U�range Syl�A�B��Z � ����

��



In particular� Syl�A�B� is onto i� Syl�UAU��� Z��BZ� is onto�

Proof of Proposition ��
With A � Mk��� and B � M���� both Jordan blocks corresponding to � � F � �rst observe
that Syl�A�BT� and Nk� � Syl�Nk� N

T
� � are the same operator� since for every X � F k�� we

have

AX �XBT � ��Ik �Nk�X �X��I� �NT
� � � NkX �XNT

� �

To �nd the range of Nk�� we use the fundamental relationship range�Nk�� � �kerN �
k��

�� here
N �
k� denotes the adjoint of Nk� with respect to the standard inner product on F k�� de�ned

by hX�Y i � trace�XY H�� The computation

hLX� Y i � trace�LXY H� � trace�XY HL� � hX�LHY i

shows that the adjoint of the leftmultiplication operator L � X 
	 LX is L� � X 
	 LHX�
Similarly one sees that the adjoint of the rightmultiplication operator R � X 
	 XR is
R� � X 
	 XRH � Together these imply that N �

k� � Syl�NT
k � N���

Now kerSyl�Nk� N�� is wellknown ��	� ���� it is just the set of all Toeplitz matrices of
the form �	 T � when k � �� or � T� � when k � �� where T � F d�d with d � min�k� �� is upper
triangular� From this known result we can obtain ker Syl�NT

k � N�� by a change of coordinates
as in the discussion of �
� above� Letting Ek � �ek ek��    e� e�� denote the k�k �exchange�
matrix� we have NT

k � EkNkE
��
k � so the following diagram commutes�

F k�� Syl�Nk�N�	���������	 F k��

X ��EkX

��y�� ��
��yY ��EkY

F k�� Syl�NT
k
�N

�
	����������	 F k�� �

����

Thus kerN �
k� � ker Syl�NT

k � N�� � Ek  kerSyl�Nk� N�� is the set of all k � � Hankel �i�e��
constant along antidiagonals� matrices which are zero everywhere except possibly along the
last d antidiagonals�

Finally� consider the Hankel matrices Hi � F k�� where Hi has ones along the �k��� i�th
antidiagonal and zeroes everywhere else� Clearly fHi j � � i � dg is a basis for kerN �

k�� For
a matrix to be orthogonal to Hi� the sum of its entries along the �k � � � i�th antidiagonal
must be zero� Thus

�kerN �
k��

� � fY � F k�� j sum of entries along each of the last d antidiagonals is zerog� �

Proof of Proposition ��

For Sylvester operators TA � X 
	 AX �XAT � the appropriate coordinate changes are given
as follows� Let U � F n�n be any invertible matrix� and bA � UAU��� Then the following

��



diagram commutes�

FSym�n�
TA�����	 FSkew�n�

X ��UXUT

��y�� ��
��yY ��UY UT

FSym�n�
T
bA�����	 FSkew�n� �

����

Thus TA is onto i� T
bA
is onto� Without loss of generality� then� we may assume that A is in

any convenient normal form in F n�n�
Beginning with the complex case �F � C�� suppose that A is in Jordan canonical form�

writing A � A�� � A�� � � � � � Amm where each Aii is an ni � ni Jordan block Mni��i��
Partition X � CSym�n� into blocks Xij conformally with A� The blockdiagonal nature of
A means that the operator TA may be treated blockwise�

�TAX�ij � �AX �XAT �ij � AiiXij �XijA
T
jj �

so the ijthblock of TAX depends only on the ijthblock of X� Consequently we may de�ne
the block operators Tij � Xij 
	 AiiXij �XijA

T
jj for � � i� j � m� and observe that TA is onto

i� every Tij is onto�
It is important to note a subtle di�erence between Tij with i �� j and Tii� Because

X is symmetric� the diagonalblock operators Tii must be regarded as maps CSym�ni� 	
CSkew�ni�� whereas the o�diagonalblock operators Tij �i �� j� are maps Cni�nj 	 Cni�nj �
These di�erences in domain and codomain are crucial to correctly judging whether each Tij
�and hence TA� is onto or not�

By Proposition �� the o�diagonalblock operators Tij � Syl�Aii� A
T
jj� are onto i� �i �� �j �

By contrast� the diagonalblock operators Tii are always onto� To see this� �rst observe that
the sum of the entries along any antidiagonal of a skewsymmetric matrix is zero� Then by
Proposition � we have CSkew�ni� � range Syl�Aii� A

T
ii� � that is� for any Y � CSkew�ni�

there is some Z � Cni�ni such that

Syl�Aii� A
T
ii��Z� � AiiZ � ZAT

ii � Y� ����

This Z� however� may not be in the domain of Tii� But taking transpose of both sides of ����
shows that Syl�Aii� A

T
ii��Z

T � � Y � so with U � �
�
�Z � ZT � we have Syl�Aii� A

T
ii��U� � Y �

Since U � CSym�ni�� we have Tii�U� � Y � showing that Tii is onto�
Thus we conclude that TA is onto �� Tij is onto for all i� j �� �i �� �j for all i �� j�

and the F � C case is proved�
The real case �F � IR� follows almost immediately from the complex case� For a real

matrix A there are two operators� TA � IRSym�n� 	 IRSkew�n� and T CA � CSym�n� 	
CSkew�n�� de�ned by the same formula X 
	 AX � XAT � The operator T CA is the com
plexi�cation of TA� so dimR�range TA� � dimC �rangeT CA �� Hence TA is onto �� T CA is
onto� �

Proof of Proposition ��

The strategy here is to apply a change of coordinates to the real operator Syl�A�BT� so
that A and B are brought into complex Jordan form� then use Propositions � and � to �nd

��



the range of the resulting complex operator� and �nally translate back into completely real
terms using a relation analogous to ����� We begin by recalling the similarities that convert
real Jordan blocks into complex Jordan form�

Consider the blockdiagonal ��k � diag�������    �����k��k � where �� � �p
�
� � �
�i i � is

as in Lemma �� and the permutation P�k � �e� e� e�    e�k�� j e� e
    e�k� �� It is now
straightforward to check that

P T
�k��

H
�k A��k�P�k � bA �

�
Mk 	
	 Mk

�
�

whereMk �Mk��� is the k�k Jordan block for � � a�ib� Similarlywe have P T
����

H
��B ����P�� �bB � diag�M��M ��� so that

P T
����

H
��B

T ����P�� � bBH �

�
M

T

� 	
	 MT

�

�
�

It is important to note that � � a � ib appears in the ��� �� block in bA but in the ��� ��

block in bBH�
More generally� let us consider the action of the �similarities� �H

�kX ��� and P T
�k Y P��

on arbitrary �k � �� matrices X and Y � With X partitioned into �� � blocks Xij �� � i �
k� � � j � ��� it is easy to see that the ijth �� � block of �H

�kX ��� is just �
H
� Xij ��� Thus

any real blockXij will be transformed into a ��� complex matrix � u v
�v �u � � U� �see Lemma ���

Partition Y in the same way into � � � blocks Yij �
� uij vij
wij zij

�
� Then P T

�k Y P�� is the block
matrix � U V

W Z �� where the k � � blocks U� V�W and Z are assembled entrywise from the Yij
blocks via

Uij � �Yij��� � uij Vij � �Yij��� � vij

Wij � �Yij��� � wij Zij � �Yij��� � zij �

Now put these two maps together� de�ning ��k � ��kP�k and letting U�k��� � C�k��� denote
the set of all complex matrices of the form

�
U V
V U

�
� where U� V � Ck�� are arbitrary� We see

that the map

IR�k��� ���	 U�k���
X 
	 �H

�kX ���

is a �real� linear isomorphism� Hence the change in coordinates in Syl�A�BT� which takes

A to bA and BT to bBH gives us the commutative diagram�

IR�k��� Syl�A�BT 	���������	 IR�k���

X ��H
�k
X 

��

��y�� ��
��yY ��H

�k
Y 

��

U�k��� Syl� bA� bBH	���������	 U�k��� �

����

�Note that the inverse of P�k is the �perfect shu�e� permutation� known to American magicians as the
�faro shu�e� and to English magicians as the �weave shu�e��

�




Thus

range Syl�A� BT � � ��k�range Syl� bA� bBH���H
�� � ����

Next we compute the range of Syl� bA� bBH�� The blockdiagonal nature of bA and bBH means

that Syl� bA� bBH� may be treated blockwise� just as TA was in the proof of Proposition �� We
have

Syl� bA� bBH�

�
U V

V U

�
�

�
Mk 	
	 Mk

� �
U V

V U

�
�
�
U V

V U

� �
M

T

� 	
	 MT

�

�
�


MkU � UM

T

� MkV � V MT
�

MkV � V M
T

� MkU � UMT
�

�

�

� T���U� T���V �
T���V � T���U�

�
�

Observe that since T���U� � T���U� and T���V � � T���V �� it su�ces to �nd the ranges of
T�� and T��� By Proposition �� T�� is onto� Proposition � gives us the range of T��� Thus we
see that range Syl� bA� bBH� is the set of all

�
U V
V U

� � U�k��� such that the sum of the entries

along each of the last d antidiagonals of V � Ck�� is zero�
Transforming this result using ���� and Lemma � gives us the desired characterization of

range Syl�A� BT �� �

Proof of Proposition ���

Let T CA denote the complexi�cation of TA� that is the map

T CA � CSym�n� �	 CSkew�n�

X 
	 AX �XAT �

We show �rst that kerT CA contains at least one invertible matrix� and from this deduce that
kerTA must also have at least one invertible element� Then the desired conclusion will follow
from basic properties of algebraic varieties�

To �nd an invertible element of kerT CA � begin as in the proof of Proposition �� Change

coordinates from T CA to T
bA
� CSym�n� 	 CSkew�n�� where bA is the Jordan form of

A� and then treat T
bA
blockwise� The diagonalblock operators Tii are just Syl�Nni

� NT
ni
�

restricted to CSym�ni�� so an argument like the one used to compute kerN �
k� in the proof

of Proposition � �see diagram ��� shows that kerTii � ker Syl�Nni � Nni� Eni � a certain set of
Hankel matrices� For our purposes it su�ces to observe that the invertible matrix Eni is in
kerTii � thus E � diag�En� � En��    � Enm� is an invertible element of kerT

bA
� Transforming

E back into kerT CA via ��	� yields an invertible element of kerT CA �
Now let fM� � � �Mkg be any �xed basis for kerTA � and consider the polynomial

p�x�� x�� � � � xk� � det�x�M� � x�M� �   � xkMk��

With �x�� � � � xk� � IRk� this polynomial p distinguishes the singular and invertible elements
of kerTA � But T CA is the complexi�cation of TA � so the real matrices fM� � � �Mkg also form a

�	



basis for kerT CA � thus with �x�� � � � xk� � Ck� the same polynomial p distinguishes the singular
from the invertible elements of kerT CA � Now the coe�cients of p are real �since each Mi is
real�� and for any polynomial p with real coe�cients the following are equivalent�

�i� p � 	 as a formal polynomial� i�e all the coe�cients of p are zero�

�ii� p � 	 as a function IRk 	 IR �

�iii� p � 	 as a function Ck 	 C�

The existence of an invertible element in kerT CA means that p �� 	 as a complex function
Ck 	 C� Therefore p �� 	 as a real function IRk 	 IR either� so there must be some
invertible element in kerTA � Consequently the zero set of p in IRk �equivalently the set of
singular matrices in kerTA � is a proper algebraic subset� and hence a closed� nowhere dense
set of measure zero� Thus Inv�kerTA� � the complement of the singular matrices in kerTA �
is open and dense in kerTA � �

�
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