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Abstract. In aerodynamic applications many model reduction methods use Proper
Orthogonal Decomposition (POD). In this work a POD-based method, called Miss-
ing Point Estimation (MPE), will be applied to steady-state flows with variation of
the angle of attack. The idea of MPE is to select a subset of the computational grid
points (control volumes) and limit the governing equations to these. Subsequently,
the remaining equations are projected onto the POD subspace. This approach has
the advantage that the nonlinear right hand side of the governing equations has to
be evaluated only for some selected points (control volumes).
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1 Introduction

In fluid dynamics Proper Orthogonal Decomposition and Galerkin Projection are
often used to obtain reduced order models. In many publications this is achieved
by formulating the inner products that appear in the Galerkin projected system in
terms of the POD coefficients; confer Rowley et al1 for example. Since the dimension
of the POD subspace (number of POD coefficients) is typically very small compared
to the number of grid points, the inner products can then be efficiently evaluated.

More recently, an approach called the subspace projection method2,3 has been
proposed, which projects the full order model onto the POD subspace. This has the
advantage that no elaborate modelling has to be done to obtain the reduced order
model. However, since the projected full order residual is part of the reduced model,
there is a dependence on the degrees of freedom of the original model.

In order to alleviate this shortcoming, we will present an alternative approach
which aims at approximately evaluating the projected residual in a sparse way, that
is, evaluating it at only a subset of all computational grid points. This idea is based
on the Missing Point Estimation (MPE) method, which has been introduced by
Astrid4. Since its first publication MPE has been used in many different applica-
tions such as heat transfer processes5, electrical circuit modeling6, and oil reservoir
simulation7. The authors are not aware of any previous applications of MPE to
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aerodynamics.

2 Reduced order modelling

In this work we will consider the two-dimensional Euler equations to be the
governing equations of the original model, which after discretization in space with
a finite volume scheme can be written as

d

dt
�w(t; α) = −Ω−1 �R(�w(t; α)), (1)

where �w is the vector of conservative variables, Ω is a diagonal scaling matrix with
the volumes on the diagonal such that each volume appears once for each conserva-
tive variable and �R is the residual vector constituting the spatial discretization of
the fluxes through the faces of the control volumes. The solution of the equations
depend on the angle of attack α, which is a parameter to the model and is defined
as the angle between the oncoming flow and the body reference line. The four con-
servative variables are density, the momentum densities in both spatial directions,
and total energy density. We will assume that the computational grid consists of
n points. Hence, the vector of conservative variables and thus also the discretized
system (1) is of size 4n for a two-dimensional geometry. In this work our goal is to
obtain a system of reduced size, which accurately captures the dynamics of the orig-
inal model. To achieve this Proper Orthogonal Decomposition is used to construct
a suitable basis. It will be outlined next.

2.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition is a technique, which yields a basis for the
solution space of a model if a set of solutions - called snapshots - are given. In
our work the snapshots are steady-state solutions �wi to the Euler equations (1)
for different angles of attack, that is �wi = �w(αi). They are computed with the
finite volume CFD solver Tau8, which uses a cell-vertex scheme with dual control
volumes9.

After computing the average �̄w = 1
m

∑m
i=1 �wi of the m given snapshots, the so-

called snapshot matrix is constructed as

Y =
[
(�w1 − �̄w) · · · (�wm − �̄w)

]
. (2)

We will consider the POD in the discretized L2 space with its inner product given
by (�wi, �wj)Ω = �wT

i Ω�wj, where Ω is defined as before. The idea of POD is to find a
set of basis vectors ui, which optimally describe the snapshot matrix Y . This leads
to the maximization problem10

max
u1,...,ud∈R4n

d∑
i=0

m∑
j=0

|(wj, ui)Ω|2 (3)

s.t. (uk, ul) = δkl for 1 ≤ k, l ≤ d,

where d is the number of basis vectors used in the reduced order model.
Its solution is related to the Singular Value Decomposition (SVD) of the weighted

snapshot matrix Ȳ = Ω1/2Y ∈ R
4n×m. The SVD is given by Ȳ = ŪΣV̄ , where

Ū = [ū1 . . . ū4n] ∈ R
4n×4n and V̄ = [v̄1 . . . v̄m] ∈ R

m×m are orthogonal matrices,
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which consist of the left and right singular vectors, respectively, and where Σ =
diag

(
σ1, . . . , σmin{4n,m}

)
is a diagonal matrix with the singular values as entries,

ordered such that σ1 ≥ . . . ≥ σmin{4n,m}. The maximization problem (3) is solved
by the vectors ui = Ω1/2ūi with i = 1, . . . , d, which form the POD basis. This
follows either after some technical computations from the Schmidt-Eckart-Young-
Mirsky Theorem or by solving (3) with the help of Lagrangian multipliers as done
in Theorem 1.8 in Volkwein10.

It will be assumed that the solutions �w∗, reside in the affine subspace spanned by
the POD basis, that is, they can be written as

�w∗ ≈ U�a + �̄w, (4)

where �a is a vector of suitable coefficients for the POD basis U = [u1 . . . ud] of rank
d.

2.2 Missing Point Estimation

After having established a basis for the solution space with the help of POD, we
are able to set up a reduced order model. In this work the Missing Point Estimation5

is pursued, whose idea is to evaluate the right hand side of the governing equations
only at a subset of computational grid points. Recasted in the CFD context this
means that the residual vector is computed only for the faces of those (dual) con-
trol volumes, which are associated with the selected points. This has the obvious
advantage that the residual evaluations become less costly.

In order to formulate the idea of selecting only few points, we will define the
selection matrix. To this end, assume that we want to choose the points X =
{j1, . . . , jñ} ⊂ {1, . . . , n}, where ñ is the number of the selected points. The se-
lection matrix is then given by P̃ = [ej1 · · · ejñ

] ∈ R
n×ñ, with the jth unit vec-

tor ej ∈ R
n. Since we will need the point selection for each variable, we define

P = diag(P̃ , P̃ , P̃ , P̃ ) ∈ R
4n×4ñ.

With the help of the selection matrix a projection onto the selected points can
be defined as ΠP = PP T . After inserting the POD representation (4) into the
governing equations (1), which introduces an error �ε, we apply the projection. This
yields

PP T U
d

dt
�a(t; α) = −PP T Ω−1 �R(U�a(t; α) + �̄w) + PP T�ε.

Note that the term d
dt

�̄w on the left hand side is dropped, since it is zero due to the
fact that the average is independent of time. The constructed system is highly over-
determined. Therefore the number of equations is reduced by imposing orthogonality
conditions upon the system, which force it to be orthogonal to the POD subspace
in L2 sense, that is

(
ui, PP T

[
d

dt
U�a(t; α) + Ω−1 �R(U�a(t; α) + �̄w)

])
Ω

= 0

with i = 1, . . . d. Recasting the above equations back into matrix representation
yields

(UT PP T ΩU)
d

dt
�a(t; α) = −UT PP T �R(U�a(t; α) + �̄w).
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As a last step we eliminate the matrix in front of the time derivative on the left
hand side by multiplying with its inverse and obtain the MPE system

d

dt
�a(t; α) = −(UT PP T ΩU)−1UT PP T �R(U�a(t; α) + �̄w). (5)

2.2.1 The projection of the Missing Point Estimation

The derivation of the Missing Point Estimation can also be recasted into a pro-
jection framework. Consider the projection

Π = U(UT PP T ΩU)−1UT PP T Ω. (6)

Obviouly, if Π is applied to (1), then the reduced system of the MPE (5) is ob-
tained. In general, Π will not be orthogonal, but oblique, and is a Petrov-Galerkin
projection.

Note that the projection of Missing Point Estimation can be seen as a catenation
of two different projections: The first one projects onto the selected points, while
the second one projects onto the POD subspace.

2.2.2 Point Selection

Since up to now it has not been outlined how to select the points, this issue shall
be addressed now.

It has been observed that if the points are chosen such that they are spatially
clustered, the information obtained at these points is limited. For this reason, we
choose those points, which are contained in three rings around the airfoil: the first
ring is close to the surface, the second further away and finally the last one contains
the points on the farfield.

Table 1 defines the three rings by specifying the minimal and maximal distance
from the surface. The distances are measured with the help of the reference length of
the model. For example for airfoils, which are considered in this work, the reference
length is determined by the length of the airfoil, which is set to be one.

ring 1 2 3
minimal distance from surface 0.2 2.0 99.0
maximal distance from surface 1.0 9.0 101.0

Table 1: Definition of the rings for choosing X.

Since quite a lot of points are selected in this way, we investigate another point
selection strategy found in the literature. Following the approach of Willcox11 and
Astrid et al5 another option to choose the points is based on minimizing the condition
number of the matrix M = (UT PP T ΩU). This can be interpreted as demanding
the projection of the basis to be as orthogonal as possible in the L2 sense for the
chosen points, considering that the condition number of a matrix is one if and only
if it is the multiple of an orthogonal matrix.

Note that selecting the points is a combinatorial problem and hence very costly.
For this reason we preselect an index set of points X, which seem to be good can-
didates for selection. In fact, we will choose those points lying in the three rings
defined by the distances given in Table 1.

299



evolutionary and deterministic methods for design, optimization and control

The pseudo-code given in Algorithm 1, in which κ stands for the condition number
of M and I for the index set of the selected points, sketches the algorithm for point
selection. In each iteration the point of all points that have not been considered
before is chosen, which if considered along with those points of the previous iterations
yields a minimal condition number for M . This procedure is repeated until a user
defined bound δ for the condition number is reached.

Algorithm 1 Point Selection Algorithm

Input: X, U , Ω, δ # Indices of preselected points, POD basis, volumes
and user defined bound for condition number

Output: I # Indices of selected points
1: P̃ = [ ], I = {} # Initialize selection matrix P̃ and index set I

2: κmin = ∞ # Initialize minimal condition number
3: while κmin > δ # Repeat until target condition number is met
4: for i ∈ X\I # Loop over points that have not been considered
5: P̄ =

[
P̃ ei

]
# Add current index’ unit vector to selection matrix

6: κi = κ(UT P̄ P̄ T ΩU) # Compute condition number after adding index
7: end for
8: j = arg mini κi, # Determine optimal index
9: κmin = κj # Update minimal condition number κmin

10: I = I ∪ {j}, # Update index set I with chosen index
11: P̃ =

[
P̃ ej

]
# Update selection matrix P̃

12: end while

3 Results

The Missing Point Estimation approach is tested for the NACA 0012 airfoil in this
work. All snapshots are computed using the Euler equations with an unstructured
grid with n = 1140 points (grid cells). Since we are computing four variables, the
full order CFD model is of size 4n = 4560. The grid is displayed in Figure 1 and 2.
Note that the predicted solutions are never included in the snapshot set.

Note that we are looking for steady states, for which the residual �R in (1) is zero.
Therefore instead of time-integrating the MPE reduced order system (5), we search
for the root of the right hand side. This is realized with Powell’s Dog Leg method,
which is implemented in the function fsolve of the subpackage optimize of scipy 12.
The function fsolve is a wrapper around Minpacks hybrd and hybrj algorithms13.
As a start vector for the root finding algorithm, the mean flow is chosen, i.e. �a = �0.

3.1 Test case 1: Subsonic flow with variation of the angle of attack

As a first simple test case a subsonic flow at a free stream Mach number of
M∞ = 0.3 is considered. Our goal is to predict the solution at α = 7◦. As snapshots
we take steady-state solutions for the angles of attack α ∈ {0◦, 2◦, 4◦, 6◦, 8◦, 10◦, 12◦}
and at the same Mach number. After computing the POD, we take a look at the
relative energy contained in each mode in L2 sense, which is given by

E(d) =
σ2

d∑m
i=1 σ2

i

,
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where σi are the singular values of the POD. The relative energy is shown in Table
2.

d E(d) d E(d) d E(d)
1 9.99091e-01 4 2.73605e-08 6 2.79418e-11
2 9.08121e-04 5 1.65420e-09 7 2.09805e-16
3 3.71393e-07

Table 2: Relative information content of the first test case.

Note that the relative energy for d = 7 is numerically zero, that is, the rank of
the snapshot matrix as given in (2) is d− 1. It can easily be seen that this is due to
the subtraction of the average from the columns of Y , whereby the columns become
linearly dependent. In fact, the average can be considered as a mode and the dth
mode should always be disregarded since it carries no information whatsoever.

Furthermore note that the high energy contained in the first mode is due to the
L2 scalar product.

We want to focus our attention on the impact of the truncation level of the POD
modes. For this purpose we do the following test: We choose all 347 points, which lie
in the three rings defined by Table 1, in order to keep the number of selected points
fixed. In this way there is no influence of the number of points on the comparison
of the accuracy for different choices of the number d of kept modes.

Table 3 shows the lift and drag coefficient cl and cd as well as the associated
errors for the different truncation levels. It can be seen that by increasing the
number of modes, the error can be reduced, but at the same time the number of
residual evaluations increases. Furthermore, it is interesting to see that although
only ñ = 347 out of 1140 are taken into account, the error is almost negligible when
choosing all modes. This means that the information contained in some of the points
suffices to get a very good agreement with the CFD full order reference solution.

modes residual evaluations cl (error in %) cd (error in %)
d = 1 7 0.8442 (2.52%) -0.007557 (214.07%)
d = 2 9 0.8643 (0.20%) 0.006912 (4.33%)
d = 3 10 0.8637 (0.27%) 0.006999 (5.65%)
d = 4 12 0.8645 (0.17%) 0.006848 (3.37%)
d = 5 13 0.8665 (0.06%) 0.006542 (1.25%)
d = 6 14 0.8660 (0.00%) 0.006618 (0.11%)

CFD 252 0.8660 0.006625

Table 3: Lift and drag coefficients compared for different truncation levels for the first test case.

Furthermore it can be seen that the more modes are taken into account, the
more residual evaluations are needed and consequently, the more computationally
expensive the reduced order model will be. For this reason we choose d = 2 to keep
the computational costs low for the reduced order model. Note that the modes carry
more than 99.9999% of the energy measured in L2 norm.

Next, Algorithm 1 is applied. For this test case it yields only one point lying on
the farfield of the computational domain, such that M has a condition number of
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κ(M) = 1.01. With this single point, i.e. ñ = 1, we construct the MPE reduced
order model (5). Figure 3 compares the plots of the pressure distribution cp on the
surface of the airfoil for the full and reduced order model. Both bear a striking
resemblance to one another. The lift and drag coefficient cl and cd is exhibited in
Table 4. It can be seen that the relative error for the lift coefficient compared to the
full order solution is only 0.20%. The error for the drag coefficient is higher and is
about 4.33%.

We want to investigate the influence that the number of selected points ñ has.
To this end, we modify line 3 of Algorithm 1 such that the loop is not ended when
a target condition number is met, but when a certain number of selected points is
reached. In Table 4 the lift and drag coefficient cl and cd for the MPE and the CFD
reference solution are depicted.

selected points residual evaluations cl (error in %) cd (error in %)
ñ = 1 9 0.8643 (0.20%) 0.006910 (4.30%)
ñ = 10 10 0.8643 (0.20%) 0.006910 (4.30%)
ñ = 50 10 0.8643 (0.20%) 0.006917 (4.41%)
ñ = 200 9 0.8643 (0.20%) 0.006916 (4.39%)
ñ = 347 9 0.8643 (0.20%) 0.006912 (4.33%)
n = 1400 9 0.8644 (0.18%) 0.006976 (5.30%)

Table 4: Lift and drag coefficients compared for different selected points for the first test case.

It can be observed that both the number of residual evaluations and the relative
errors are about the same, no matter how many points are chosen. Interestingly,
when taking into account all points the error for the drag coefficient cd is a bit higher
compared to disregarding some points.

Finally, we want to give a few remarks on the computational time. Since even
the full order solution takes only 1.2 CPU seconds, all computational times, which
are given, are error-prone and should therefore be regarded as trends rather than
exact measurements. Furthermore note that the full order CFD solver Tau8 is a
highly optimized, industrially used C code, whereas the MPE is implemented in C
and python and the code is rather prototypical.

The full order solution is computed such that the residual norm is dropped by
seven orders of magnitude and the computation is started from free-stream values.
For acceleration purposes a geometrical multigrid algorithm is used. With these set-
tings a computational time of 1.2 CPU seconds is obtained in each of ten conducted
runs.

Since the point-wise residual evaluation is not implemented efficiently yet, the
computational times for the Missing Point Estimation cannot be given exactly. How-
ever, the computation when taking into account all points can be seen as an upper
bound for the time needed for computing the POD and solving the system, if the
number of residual evaluations is the same. The overall time for this computation
is 0.228 CPU seconds (averaged out for ten runs), including 0.066 CPU seconds for
computing the POD.

Note that for the before mentioned computation no effort has to be put into se-
lecting the points with Algorithm 1. The computational times of the point selection
algorithm for different numbers of selected points shall be investigated next. They
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are given in Table 5, where each given time is the average of ten runs. Note that
the computational time for one single point is negligible compared to the effort of
computing the POD and solving the reduced system, while for ten points it is about
the same. If ñ = 50 points are selected, using Algorithm 1 takes as long as a full
order solution.

selected points ñ = 1 ñ = 10 ñ = 50 ñ = 200
computational time (in CPU seconds) 0.026 0.248 1.173 3.647

Table 5: Computational time for Algorithm 1 for the first test case.

3.2 Test case 2: Transsonic flow with variation of the angle of attack

In the following we want to test the MPE on a flow in the transsonic flow regime
at Mach number M∞ = 0.73. Flows of this type are more relevant for designing
wings and airplanes, since nonlinear effects have to be accounted for.

We want to predict the flow at an angle of attack of α = 5◦ and use snapshots at
the angles of attack α ∈ {3◦, 4◦, 6◦, 7◦}.

Having computed the POD, we take a look at the energy E(d) contained in the
modes given in Table 6. Once again the first mode carries most of the energy, which
is due to the L2 scalar product.

d 1 2 3 4
E(d) 9.99874e-01 1.15971e-04 9.97872e-06 2.21348e-18

Table 6: Relative information content of the second test case.

Next, we want to investigate the impact of the truncation level to the error in
the lift and drag coefficient. To this end, we select all points contained in the three
rings, as we have done in the previous test case. Table 7 presents the relative errors
in the lift and drag coefficient for different truncation levels. Once again, the more
modes are taken into account, the more residual evaluations are needed to find the
solution. This time, using all three modes leads to a slightly greater error in the
aerodynamic coefficients than taking only two modes. Note that a relative error of
less than one precent can be achieved with d = 2.

modes residual evaluations cl (error in %) cd (error in %)
d = 1 7 8.991e-01 (3.62%) 6.722e-02 (3.41%)
d = 2 12 9.416e-01 (0.93%) 7.007e-02 (0.69%)
d = 3 15 9.510e-01 (1.94%) 7.109e-02 (2.16%)

CFD 168 9.329e-01 6.959e-02

Table 7: Lift and drag coefficients compared for different truncation levels for the second test case.

In Figures 4, 5, and 6 the pressure distribution plots are shown. While in case
that only one mode is used the shock is smeared out by the MPE, when using more
modes the shock location is resolved well. However, the pressure level upstream of
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the shock is overestimated. Since the pressure distribution is matched better when
three modes are used, in the following tests we keep all d = 3 modes. In this way
more than 99.9999% of the energy is contained in the modes.

When applying Algorithm 1 with the user defined bound δ set to 1.5, three points
lying on the farfield are selected. This yields a condition number of κ(M) = 1.446.
The first row of Table 8 shows that the error in the lift and drag coefficient is less
than one percent. Furthermore Figure 7 depicts the pressure distribution plot for the
surface. It can be observed that the shock location is nicely matched. Unlike before,
the pressure level upstream of the shock is underestimated instead of overestimated.

In the following the influence of the point selection onto the solution is addressed.
For this purpose we choose more points with Algorithm 1. Table 8 illustrates the
number of residual evaluations and the error in the lift and drag coefficient for
different point selections. Unlike in the subsonic test case, the number of residual
evaluations increases with the number of points taken into account.

selected points residual evaluations cl (error in %) cd (error in %)
ñ = 3 9 9.278e-01 (0.55%) 6.928e-02 (0.45%)
ñ = 10 12 9.304e-01 (0.27%) 6.920e-02 (0.56%)
ñ = 50 12 9.300e-01 (0.31%) 6.918e-02 (0.59%)
ñ = 200 13 9.359e-01 (0.32%) 6.952e-02 (0.10%)
ñ = 347 15 9.510e-01 (1.94%) 7.109e-02 (2.16%)
n = 1400 - - -

Table 8: Lift and drag coefficients compared for different selected points for the second test case.

While the relative error in the lift and drag coefficient is less than one percent
for the first four rows in Table 8, it is about four times higher when all points of
the three rings are regarded. This suggests that noise is added by including some
points.

In the following we will investigate the influence a particular point has, which lies
directly on the shock. Its location is illustrated in Figure 8. Table 9 shows the errors
in the aerodynamic coefficients when the point is not included (ñ = 316) and when it
is included (ñ = 317). Note that the error both for cl and cd is more than ten times
higher, when adding the point to the selection. In addition, the overestimation of
the pressure level upwind of the shock is stronger, which can be seen in the cp plots
in Figures 9 and 10. This indicates that the MPE is very sensitive to shocks.

selected points residual evaluations cl (error in %) cd (error in %)
ñ = 316 40 9.348e-01 (0.20%) 6.941e-02 (0.26%)
ñ = 317 45 9.604e-01 (2.95%) 7.151e-02 (2.76%)

Table 9: Lift and drag coefficients compared for different selected points for the second test case.

As a matter of fact, if all points of the computational domain are chosen, then
there is no convergence at all. This is due to an unphysical value, reported by the
flow solver Tau8 that occurs while computing the Jacobian for Powell’s Dog Leg
method.
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Finally, the computational time shall be addressed. Again, the CFD reference
solution is computed with the convergence critrion that the residual norm decreases
by seven orders of magnitude. Using multigrid, the main loop of the flow solver
takes 0.8 CPU seconds in all ten conducted runs.

Since the reduced order model with all points taken into account does not con-
verge, we will consider the reduced order model with ñ = 3 points. The overall
computation time is 0.306 CPU seconds averaged out for three independent runs.
This includes 0.055 and 0.093 CPU seconds for POD and Algorithm 1, respectively.
Note that the pointwise residual evaluation is not implemented efficiently yet, so
that the time needed is in fact less than the numbers given.

Finally, Table 10 shows the computational times for the point selection algorithm.
Note that they are a bit higher than in the previous test case, since three instead of
two modes are taken into account. It can be seen that selecting about ten points is
still reasonable, but when choosing more, the point selection outweighs the savings
of the reduced order model.

selected points ñ = 3 ñ = 10 ñ = 50 ñ = 200
computational time (in CPU seconds) 0.093 0.302 1.416 4.418

Table 10: Computational time for Algorithm 1 for the second test case.

4 Conclusions and outlook

In this work a method for efficiently computing steady flows has been proposed.
It is based on Proper Orthogonal Decomposition and the idea that the reduced
order model does not require the information at all computational grid points, if an
appropriate basis is available.

The Missing Point Estimation has been tested for two different test cases; one
in the subsonic and the other one in the transsonic flow regime. In both cases only
few points are needed to predict the lift and drag coefficient as well as the pressure
distribution reasonably accurate.

Two different strategies for selecting the points, which are considered in the pro-
jection of the MPE, have been presented. The first chooses the points based on their
location with respect to the distance from the surface and selects a lot of points,
while the second one is based on minimizing the condition number of a matrix that
is part of the projection. With the later strategy only few points are determined,
but this comes at a high computational cost, as it has been shown in the test cases.
Nonetheless, it seems to be an excellent means for point selection.

For applications, in which a fast real-time model is needed and the off-line cost is
irrelevant, the point selection strategy based on the minimization of the condition
number will be very useful. An example could be the optimal control of a flow,
where the control is computed and fed to the experiment, which is ongoing in the
wind tunnel simultaneously.

In the second test case in the transsonic flow regime we have seen that the MPE
is very sensitive to shocks. Having included a point, which lies in the shock region,
the error increased dramatically in both the aerdynamic coefficients as well as the
pressure distribution. When selecting all points, there was no convergence due to
an unphysical value in the flow.
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Besides this convergence problem, it has been observed in other test cases that on
the one hand the root finding algorithm stagnates and thus does not find a solution.
And on the other hand, it sometimes does find a solution, which - however - is far
from the reference solution. These issues have to be addressed in future work.
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Figure 1: The grid for the NACA 0012 airfoil
with n = 1140 points used for all computa-
tions.

Figure 2: The grid for the NACA 0012 airfoil
used for all computations zoomed in on the
surface.

Figure 3: The pressure distribution cp for
the subsonic test case (M∞ = 0.3) with only
one point used for MPE.

Figure 4: The pressure distribution cp for
the transsonic test case (M∞ = 0.73) with
one mode and ñ = 347 points used for MPE.

Figure 5: The pressure distribution cp for
the transsonic test case with two modes and
ñ = 347 points used for MPE.

Figure 6: The pressure distribution cp for
the transsonic test case with three modes
and ñ = 347 points used for MPE.

308



A. Vendl and H. Faßbender/Efficient POD-based MOR for steady aerodynamic applications

Figure 7: The pressure distribution cp for
the transsonic test case with three modes
and ñ = 3 points determined by Algorithm
1.

Figure 8: The point, which leads to the noise
in the transsonic test case and lies directly
on the shock.

Figure 9: The pressure distribution cp for
the transsonic test case without the point
lying on the shock.

Figure 10: The pressure distribution cp for
the transsonic test case with the point lying
on the shock.
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