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Introduction

A group G is said to be the product of its subgroups Gi for i ∈ I if G is generated by the

Gi and the set GiGj is a subgroup of G for all i, j ∈ I. In this terminology, a famous

result of P. Hall [24] published in 1937 can be formulated as follows: The finite soluble

groups G are precisely the finite groups which are the product of certain of their Sylow

subgroups. This shows in particular that the finite soluble groups are groups which are

the product of certain of their nilpotent subgroups.

For about 20 years, it remained an open question whether the converse of the last

statement is also true, namely whether a finite group that is the product of certain

nilpotent subgroups is soluble. In 1955, Itô [32] obtained a first result in this direction,

namely that a product of two (possibly infinite) abelian subgroups is metabelian.

The original question was answered positively by Wielandt [45] and Kegel [33] in

1958 and 1961 respectively. Their result, stating that a finite group is soluble if and

only if it is the product of finitely many nilpotent subgroups, has become known as the

Kegel-Wielandt theorem.

This motivates the following general question: If the group G is the product of its

subgroups Gi with i ∈ I, and certain group-theoretical properties of the Gi are known,

what group-theoretical properties does the group G have?

One problem in answering this question is that in general, the group G is not uniquely

determined by the Gi since the concept of a product of subgroups includes e.g. direct

and semidirect products. Observe however that these kinds of products are not typical

because the factors are not necessarily normal in G (for a finite group that is the product

of two nonnormal subgroups see Example 3.6.8 below).

A second question, often encountered when dealing with questions of the first type, is

the following: Which subgroups of G inherit the product structure of G, or, more con-

cretely, which subgroups of G are conjugate to (isomorphic to) a prefactorized subgroup

S of G, i.e. a subgroup that is the product of its subgroups S ∩ Gi?

In this Diplomarbeit, we will be concerned mainly with groups G that are the product

of two subgroups A and B. Then a subgroup S of G is prefactorized if S = (S∩A)(S∩B).
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A prefactorized subgroup that also contains A∩B will be termed factorized. Chapter 1

will be dedicated to the study of factorized and in particular prefactorized subgroups in

the subgroup lattice of the group G = AB and in quotient groups.

Since products of finite nilpotent subgroups are soluble by the Kegel-Wielandt theo-

rem, we study in Chapter 2 finite groups G which are the product of two subgroups and

which satisfy some properties related to solubility. Our results are based on a result of

Wielandt [44] who proved that for every prime p, the finite group G has a prefactorized

Sylow p-subgroup. We will show in particular that if G is soluble, then it possesses a

Hall system that consists entirely of prefactorized Hall subgroups: a Hall system of this

type will play an important role in Section 3.3.

Furthermore, we will show in Section 2.2 and Section 2.3 that a relatively large number

of subgroups of G is prefactorized or factorized if A and B have coprime indices or

orders respectively: if G is finite and soluble, then it is possible to find a prefactorized

or factorized subgroup among the conjugates of any subgroup.

In Chapter 3, we specialize to groups G that are the products of two nilpotent sub-

groups A and B. One of the main tools of this and the following chapter will be a

theorem due to Gross which gives important information about the structure of G when

G is primitive. This theorem will be proved in Section 3.2 in a somewhat more general

form, based on the proof of Gross’ result given in [4].

The rest of Chapter 3 is dedicated to finding prefactorized or factorized conjugates

for certain subgroups of G: we will show that for every abnormal subgroup of G,

there is exactly one factorized conjugate (Proposition 3.3.5). This result will then be

used to reduce the question whether certain pronormal subgroups of G are prefac-

torized or factorized to questions about normal subgroups. As a first application, we

will be able to improve a result of Heineken [28], showing that for every Schunck

class H containing all finite nilpotent groups, G has a unique factorized H-projector.

More generally, we will show in Theorem 3.5.1 that every H-maximal subgroup has a

factorized conjugate. However, these factorized subgroups are not necessarily isomor-

phic.

A corresponding result about F-injectors for arbitrary Fitting classes F does not hold

(see Example 3.6.8). Nevertheless, using our results about pronormal subgroups, we will

prove in Section 3.6 that a product of two finite nilpotent subgroups has a prefactorized

or factorized F-injector if the F-radical of every product of two finite nilpotent subgroups

is prefactorized or factorized respectively and that in this case, every finite group that

is the product of two nilpotent subgroups has exactly one prefactorized F-injector. By

Proposition 3.6.9, this result applies in particular to all saturated Fitting-formations and
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thus to all subgroup-closed Fitting classes. This result generalizes a well-known result of

Amberg [1] and Pennington [40] stating that the Fitting subgroup of a product of two

finite nilpotent subgroups is always factorized.

We do not know wheter our results about injectors and radicals can be extended to

certain other classes of subgroups. In this context, it is of interest to ask whether the

hypercentre of a product G of two finite nilpotent subgroups is prefactorized, since such

a group has a factorized system normalizer (see Corollary 3.3.13). On the other hand,

an example due to Gillam [19] shows that Z(G) is not necessarily prefactorized.

Also, a number of other characteristic subgroups of the group G = AB need not

be prefactorized (or factorized), among them the derived subgroup G′, the nilpotent

residual GN and the subgroups Oπ(G) (see Example 3.4.4).

If π is an arbitrary set of primes, we show in Chapter 4 how to obtain upper bounds

on the π-length of a group that is the product of two finite nilpotent subgroups A and

B in terms of certain invariants of A and B from bounds on the p-length of a finite

soluble group in terms of a Sylow p-subgroup. We use the bounds found by Hall and

Higman [26], supplemented by some additional results of Gross [21] and Berger and

Gross [9] when p = 2, to show e.g. that for every set π of odd primes,

lπ(G) ≤ max
{
d(A), d(B)

}

and thus for any set π of primes,

lπ(G) ≤ max
{
d(A), d(B)

}
+ 1.

Our bounds for the p-lengths are best-possible in the sense of [26] whenever the bounds

in terms of the Sylow p-subgroups are best-possible.

As a further result, it will turn out that nilpotent length and the p-lengths of a group

that is the product of two finite nilpotent subgroups are not too far removed from each

other: We will show in Theorem 4.3.1 that

n(G) ≤ 2 max
p∈±!P

{
lp(G)

}
,

n(G) ≤ 2 max
p∈±!P

{
lp′(G)

}
+ 1,

and

n(G) ≤ max
p∈±!P

{
lp(G) + lp′(G)

}
.

Using essentially the above results, the nilpotent length of a product G of two finite

nilpotent subgroups A and B can also be bounded in terms of invariants of A and B. In
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particular, we show that

n(G) ≤ 2d(A) + max
{
0, 2d2(A) − 4

}
+ 1

and

n(G) ≤ d(A) + d(B) + max
{
0, d2(A) − 2, d2(B) − 2

}
.

These bounds are best-possible at least for groups of odd order.

Although it seems to be an open question whether the derived length of G can be

bounded by the derived lengths of A and B, we can still obtain some information about

the derived length of G: if π is the set of common prime divisors of the orders of A

and B, then we obtain in Section 4.4:

d
(
G/Φ(G) ∩ Oπ(G)

)
≤ max

{
c2(A), 1

2d2′(A)
(
d2′(A) + 1

)}

+ max
{
c2(B), 1

2d2′(B)
(
d2′(B) + 1

)}
,

d
(
G/Φ(G) ∩ Oπ(G)

)
= 1

2d(A)
(
d(A) + 1

)
+ 1

2d(B)
(
d(B) + 1

)

+ max
{

1
2d2(A)

(
d2(A) + 1

)
, 1

2d2(B)
(
d2(B) + 1

)}

and also

d
(
G/F (G)

)
≤

(
d(A) + max

{
0, d2(A) − 1

})(
d(B) + max

{
0, d2(B) − 1

})
.

Finally, in Section 4.5, further structural information about the Fitting quotient group

G/F (G) will be obtained; this will give rise to relate the class of products of finite

nilpotent groups to other classes of finite soluble groups and in particular to the class of

groups ‘with many Sylow bases’ introduced by Huppert in [30].

The notation used is standard and follows Doerk and Hawkes [13], Robinson [43]

and Amberg, Franciosi and de Giovanni [4]. For details, the reader is referred to the list

of symbols at the end of the text.



Chapter 1

Basic properties of products of groups

1.1 Subgroups of products of groups

Let G be a group. If X and Y are subsets of G, define

XY =
{
xy | x ∈ X, y ∈ Y

}
.

We first recall the following elementary lemma which allows to calculate the cardinality of

the set AB; for the proof, see e.g. Robinson [43], 1.3.11 or Doerk and Hawkes [13], A.1.5.

1.1.1 Lemma. Let A and B be subgroups of the group G, then |AB|·|A∩B| = |A|·|B|.
In particular if A and B are finite, then

|AB| =
|A| · |B|
|A ∩ B| .

If X and Y are subgroups of G, one is particularly interested in whether XY is again a

subgroup of G. In this case, X and Y are said to be permutable because of the well-known

equivalence of (i) and (ii) in the following

1.1.2 Lemma. Let G be a group and let A and B be subgroups of G. Then the

following statements about the set AB are equivalent:

(i) AB is a subgroup of G;

(ii) AB = BA (i.e. A and B are permutable);

(iii) [a, b] ∈ AB for all a ∈ A and b ∈ B;

(iv) ab ∈ AB for all a ∈ A and b ∈ B.

Proof. (i) ⇒ (ii). Let g ∈ AB. Since AB is a group, also g−1 ∈ AB: write g−1 = ab

with a ∈ A and b ∈ B. Then g = b−1a−1 ∈ BA and therefore AB ⊆ BA. Similarly,

BA ⊆ AB so that AB = BA.

(ii) ⇒ (iii). Let a ∈ A and b ∈ B, then we have [a, b] = a−1b−1ab ∈ ABAB =

A(AB)B = AB as required.

(iii) ⇒ (iv). Since ab = a[a, b] for all a ∈ A and b ∈ B, we have ab ∈ A(AB) = AB.
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(iv) ⇒ (i). Let a1, a2 ∈ A and b1, b2 ∈ B. We have to show that (a1b1)
−1(a2b2) ∈ AB.

But this is true since

(a1b1)
−1(a1b1) = b−1

1 a−1
1 a2b2 = (a−1

1 a2)
b1b−1

1 b2 ∈ (AB)BB = AB.

The following lemma will be needed later.

1.1.3 Lemma. . Let G be a group with subgroups A, B and C such that AC = CA

and BC = CB. Then also 〈A, B〉C = C〈A, B〉.

Proof. Let g ∈ 〈A, B〉 and c ∈ C. By Lemma 1.1.2, it suffices to show that gc ∈
〈A, B〉. Since g ∈ 〈A, B〉, g can be written g = a1b1 . . . arbr with ai ∈ A and bi ∈ B for

all b = 1 . . . r. Since by Lemma 1.1.2, ac
i ∈ AC and bc

i ∈ BC for all i, we obtain

gc = ac
1b

c
1 . . . ac

rb
c
r ∈ (ACBC) . . . (ACBC)

←−−−−r times−−−−→
= (AB) . . . (AB)

←−r times−→
C

because C permutes with both A and B. Since clearly

(AB) . . . (AB)
←−r times −→

⊆ 〈A, B〉,

we have gc ∈ 〈A, B〉C.

A group G is said to be the product of its subgroups A and B if G = AB. Sometimes

such a group is also called factorized by A and B1 or simply factorized. A subgroup S

of G = AB is called prefactorized if S = (S ∩ A)(S ∩ B), or equivalently, if every s ∈ S

can be written s = ab with a ∈ A ∩ S and b ∈ B ∩ S. Following Wielandt [45], a

subgroup S of G is called factorized if whenever s = ab with a ∈ A and b ∈ B, then

a ∈ S (and b ∈ S). Since every g ∈ G, and thus every element g of S, can be written

g = ab with a ∈ A and b ∈ B, every factorized subgroup of G is prefactorized. It is

also clear that every subgroup of G containing A or B is factorized; in particular G is

factorized.

For some statements concerning groups which are the product of two of their sub-

groups, the following generalization of Dedekind’s modular law is useful:

1 We will avoid this terminology wherever possible since this might lead to confusion when dealing with
prefactorized subgroups S which are — as groups — factorized by A∩S and B∩S. In the opinion of
the author, it might have been preferable to use the terms factorized and strongly factorized instead
of prefactorized and factorized respectively because of this problem of terminology. As we will see
later, many results about factorized subgroups also hold for the subgroups now called prefactorized,
which could be an indication that the concept of being prefactorized might be the more natural one
when dealing with subgroups of factorized groups.
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1.1.4 Lemma. Let G be a group. If X, Y and U are subsets of G such that U−1 ={
u−1 | u ∈ U

}
⊆ U , then

(i) if XU ⊆ X, then (X ∩ Y )U = X ∩ Y U and

(ii) if UX ⊆ X, then U(X ∩ Y ) = X ∩ UY .

Proof. (i) The proof follows that usually given for Dedekind’s modular law: Clearly,

(X ∩ Y )U ⊆ XU ∩ Y U ⊆ X ∩ Y U . Now let x ∈ X ∩ Y U and write x = yu with y ∈ Y

and u ∈ U . Then xu−1 ∈ XU ∩ Y ⊆ X ∩ Y and therefore x = xu−1u ∈ (X ∩ Y )U . The

proof of (ii) is similar.

The following lemma shows in particular that prefactorized subgroups are factorized

if and only if they contain A ∩ B:

1.1.5 Lemma. Suppose that the group G is the product of its subgroups A and B.

Then the following statements are equivalent:

(i) S is factorized; (ii) S = (S ∩ A)(S ∩ B) and A ∩ B ≤ S; (iii) A ∩ SB = A ∩ S;

(iv) A∩SB ⊆ S; (v) AS∩B = S∩B; (vi) AS∩B ⊆ S; (vii) S = (AS∩B)(A∩SB);

(viii) S = (AS ∩B)S; (ix) S = S(A∩SB): (x) S = AS ∩BS; (xi) S = SA∩SB.

Proof. (i) ⇒ (ii). Since every factorized subgroup is prefactorized, it remains to show

that A ∩ B ≤ S. For every x ∈ A ∩ B, we have 1 = xx−1 ∈ S and, of course, x ∈ A

and x−1 ∈ B. So by the definition of a factorized subgroup, we have x ∈ S and hence

A ∩ B ≤ S.

(ii) ⇒ (iii). Since S = (A ∩ S)(B ∩ S), we have A ∩ SB = A ∩ (S ∩ A)(S ∩ B)B =

A∩(S∩A)B. By the modular law (or by Lemma 1.1.4), A∩(S∩A)B = (S∩A)(A∩B) =

S ∩ A since also A ∩ B ⊆ S.

(iii) ⇒ (iv). This is trivial.

(iv) ⇒ (i). If s = ab ∈ S with a ∈ A and b ∈ B, then a = sb−1 ∈ A∩ SB ⊆ S whence

S is factorized.

The implications (i) ⇒ (ii) ⇒ (v) ⇒ (vi) ⇒ (i) can be proved similarly.

To prove that (vii), (viii), (ix), (x) and (xi) are equivalent to S being factorized,

suppose first that S is factorized. Then S = (S ∩ B)(A ∩ S) ⊆ (AS ∩ B)(A ∩ BS) = S,

so (vii) holds. Also, (viii) and (ix) hold since AS ∩ B ⊆ S and A ∩ SB ⊆ S by (iv) and

(vi) respectively. (x) and (xi) follow from (viii) and (ix) by Lemma 1.1.4.

Conversely, if one of the equations (vii), (viii), (ix), (x) and (xi) hold, then it is evident

that at least one of the sets AS ∩B or A∩SB is contained in S proving statements (iv)

or (vi) respectively, which are both equivalent to S being factorized.

Note. It is easy to see that for any subgroup S of G = AB, the set A∩SB equals the

set
{
a ∈ A | ab ∈ S for some b ∈ B

}
and AS ∩ B =

{
b ∈ A | ab ∈ S for some a ∈ A

}
.



1.1 Subgroups of products of groups 9

The next lemma studies the behaviour of factorized (prefactorized) subgroups in the

subgroup lattice of a factorized group G. The statements about factorized subgroups

can also be found in Chapter 1 of [4] from which also most proofs are derived. To see

that the intersection of two prefactorized subgroups is not necessarily prefactorized, see

Example 1.2.3.

1.1.6 Lemma. Let the group G be the product of its subgroups A and B.

(i) If S is prefactorized (factorized) in G, then T ≤ S is prefactorized (factorized)

with respect to the factorization S = (S ∩ A)(S ∩ B) of S if and only if T is

prefactorized (factorized) in G.

(ii) The intersection of any family of factorized subgroups of G is factorized.

(iii) The intersection of a prefactorized subgroup and a factorized subgroup is prefac-

torized.

(iv) If the subgroup S of G is the union of the prefactorized subgroups Si where i ∈ I

of G, then S is prefactorized. It is factorized, provided one of the subgroups Si is

factorized.

(v) The product of two prefactorized subgroups one of which is normal in G is pre-

factorized. It is factorized, provided that either of the subgroups is factorized.

(vi) The product of any number of prefactorized normal subgroups is prefactorized. It

is factorized if one of the normal subgroups is factorized.

Proof. (i) The statement concerning prefactorized subgroups follows from the fact

that by definition,

T = (S ∩ A ∩ T )(S ∩ B ∩ T ) = (A ∩ T )(B ∩ T )

so that T is a prefactorized subgroup of G. In case S is a factorized subgroup of G,

we have A ∩ B = (A ∩ S) ∩ (B ∩ S); thus if T is factorized in S, then T contains

(A ∩ S) ∩ (B ∩ S) = A ∩ B so that by Lemma 1.1.5, T is a factorized subgroup of G.

(ii) Let
{
Si | i ∈ I

}
be a family of factorized subgroups of G. If s = ab ∈

⋂
Si, then

s ∈ Si for all i, and hence a ∈ Si for all i by the definition of a factorized subgroup.

Hence a is contained in A ∩ (
⋂

Si), which shows that
⋂

Si is factorized.

(iii) Let S and P be a factorized and a prefactorized subgroup of G. Every g ∈ P ∩ S

can be written g = ab with a ∈ A ∩ P and b ∈ P ∩ B since P is prefactorized. Now S

is factorized and also g ∈ S, so we have a ∈ S and b ∈ S, that is, a ∈ A ∩ P ∩ S and

b ∈ B ∩ P ∩ S. This shows that S ∩ P is prefactorized.

(iv) Let s ∈ S, then s ∈ Si for some i ∈ I. Since Si is prefactorized, we have s = ab

with a ∈ A ∩ Si and b ∈ B ∩ Si, so in particular a ∈ A ∩ S and b ∈ B ∩ S. This shows
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that S is prefactorized. If one of the Si is factorized, it contains A∩B and so A∩B ≤ S

whence S is factorized.

(v) Let N and P be prefactorized subgroups of G with N ! N . Then

PN = (P ∩ A)(P ∩ B)N

= (P ∩ A)N(P ∩ B)

= (P ∩ A)(N ∩ A)(N ∩ B)(P ∩ B)

≤ (PN ∩ A)(PN ∩ B)

≤ PN,

which shows that PN is prefactorized. The statement about factorized subgroups follows

as in (iv).

(vi) Let
{
Ni

}
i∈I

be a family of prefactorized normal subgroups of G. By (v), the

product of two prefactorized normal subgroups is prefactorized and since it is clearly

normal, the statement is true for every finite index set I. For arbitrary index sets, the

product of the Ni is the union of all products of a finite number of the Ni, so the full

result follows from (iv).

The following lemma shows in particular that if G is the product of its subgroups A

and B, then also G = AxBy for all x, y ∈ G.

1.1.7 Lemma (Wielandt [44]). Let the group G be the product of its subgroups A

and B. If A0 and B0 are normal subgroups of A and B respectively such that A0B0 =

B0A0, then for every x and y ∈ G, there is a z ∈ G such that Ax
0 = Az

0 and By
0 = Bz

0

and thus Bx
0By

0 = By
0A

x
0 = (A0B0)

z.

Proof. Let x, y ∈ G and write xy−1 = a−1b with a ∈ A and b ∈ B. Let z = ax = by.

Then Az
0 = Aax

0 = Ax
0 since A0 ! A; similarly BZ

0 = By
0 . So Ax

0B
y
0) = (AoBo)

z is a

subgroup of G which is equivalent to Ax
0B

y
0 = By

0A
x
0 by Lemma 1.1.2.

This has the following consequence:

1.1.8 Lemma. If G = AB = AC = BC where A, B and C are subgroups of G and

Cg is factorized with respect to G = AB for some g ∈ G, i.e. Cg = (A ∩ Cg)(B ∩ Cg)

and C ≥ A ∩ B, then G = C.

Proof. Since G = AC = CA, we deduce from Lemma 1.1.7 that also ACg = CgA

which is conjugate to G, i.e. G = ACg. Similarly, we obtain that G = BCg so that we

may assume w.l.o.g. that C is factorized. Now by the modular law, G = A(B ∩ C) =
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(A ∩ C)B, therefore, using the modular law again, G = A(B ∩ C) ∩ (A ∩ C)B =

(A ∩ (A ∩ C)B)(B ∩ C) = (A ∩ C)(A ∩ B)(B ∩ C) ≤ C.

Note that the preceding lemma becomes false if we only have C = (A ∩ C)(B ∩ C),

that is, if C is only a prefactorized subgroup of G = AB: take any group G ,= 1 and put

A = B = G and C = 1 ,= G.

The following lemma will be needed later.

1.1.9 Lemma. Let the group G be the product of its subgroups A and B and suppose

that
{
Ni | i ∈ I

}
is a set of factorized normal subgroups of G. Then

⋂

i∈I

ANi = A
(⋂

i∈I

Ni

)
.

Proof. Clearly,
⋂

i∈I ANi contains A
(⋂

i∈I Ni

)
. To prove the other inclusion, observe

first that, since every subgroup of G that contains A or B is factorized, hence ANi is

factorized, ANi = A(B ∩ Ni) whence B ∩ ANi = (B ∩ Ni)(A ∩ B) = B ∩ Ni.

Now also
⋂

i∈I ANi is factorized by Lemma 1.1.6, hence
⋂

i∈I

ANi = A
(
B ∩ (

⋂

i∈I

ANi)
)

= A
(⋂

i∈I

(B ∩ ANi)
)

= A
(⋂

i∈I

(B ∩ Ni)
)
≤ A

(⋂

i∈I

Ni

)
.

1.2 Factorizers, prefactorizers,

and quotient groups

For every subgroup S of the factorized group G = AB, the intersection of all factorized

subgroups of G which contain S is factorized by Lemma 1.1.6. Clearly, this is the unique

minimal factorized group that contains S. This subgroup is called the factorizer of S;

we denote it with XG(S). If S is normal in G, its factorizer can be described as follows:

1.2.1 Lemma. Let the group G be the product of its subgroups A and B. If N is a

normal subgroup of G and X = XG(N) is the factorizer of N in G, then AX = AN and

BX = BN , hence A∩X = A∩BN = A∩BX and B ∩X = B ∩AN = B ∩AX Thus

X = AN ∩ BN has a triple factorization

X = (AN ∩ B)N = N(A ∩ BN) = (AN ∩ B)(A ∩ BN).

Proof. Obviously, AN and BN are factorized subgroups of G containing N , therefore

X ≤ AN and X ≤ BN , from which it follows that AX = AN and BX = BN . The

remaining statements follow directly from this and from Lemma 1.1.5
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The next lemma shows that homomorphic images of factorized groups inherit the

factorization of G.

1.2.2 Lemma. If the group G is the product of its subgroups A and B and N is a

normal subgroup of G, then

(i) G/N is the product of its subgroups AN/N and BN/N .

(ii) If S is prefactorized in G, then SN/N is prefactorized in G/N .

(iii) If N is prefactorized (with respect to G = AB) and N ≤ S, then S/N is a

prefactorized subgroup of G/N if and only if S is a prefactorized subgroup of G.

(iv) If N ≤ S, then S is a factorized subgroup of G if and only if S/N is factorized

in G/N . In particular, AN/N ∩ BN/N = XG(N)/N .

Proof. (i) This is trivial.

(ii) Clearly, SN/N = (S∩A)N/N ·(S∩B)N/N ≤ (SN/N∩AN/N) ·(SN/N∩BN/N)

which is contained in SN/N . This shows that SN/N is prefactorized.

(iii) If S is prefactorized, it is clear by the preceding statement that S/N is pre-

factorized. Conversely, suppose that S/N is prefactorized, or equivalently, that S =

(S∩AN)(S∩BN). Then by the modular law, S = (S∩AN)(S∩BN) = (S∩A)N(S∩B).

Since N is prefactorized and N ≤ S, we have S = (S ∩ A)(N ∩ A)(N ∩ B)(S ∩ B) =

(S ∩ A)(S ∩ B) which shows that S is prefactorized.

(iv) Suppose first that S is factorized. We already know that S/N is prefactorized.

Moreover, AN ∩ BN ≤ AS ∩ SB = S by Lemma 1.1.5 and so AN/N ∩ BN/N ≤ S/N ;

thus by the same lemma, S/N is factorized.

Conversely, suppose that S/N is factorized, then by Lemma 1.1.5, S/N contains

AN/N∩BN/N whence S contains the subgroup AN∩BN . By Lemma 1.2.1, AN∩BN =

XG(N) = (AN ∩ B)(A ∩ NB) and so by the modular law,

S = (S ∩ AN)(S ∩ BN)

= (S ∩ A)N(S ∩ B)

≤ (S ∩ A)(A ∩ NB)(AN ∩ B)(S ∩ B)

= (S ∩ A)(S ∩ B),

observing that A∩BN ≤ A∩S and B ∩AN ≤ B ∩ S. This also shows that A∩B ≤ S

and so by Lemma 1.1.5, S is factorized.

The definition of a factorizer cannot be extended to prefactorized subgroups, since the

intersection of two prefactorized subgroups is not necessarily prefactorized, not even if

the subgroups are normal, as the following simple example shows:
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1.2.3 Example. Let V be a vector space of dimension 3 over some field F and let{
x1, x2, x3

}
be a base of V . Let A = 〈x1, x2〉 and B = 〈x2, x3〉, then the subgroups

H1 = 〈x1, x2 + x3〉 = 〈x1〉 ⊕ 〈x2 + x3〉 and H2 = 〈x1 + x2, x3〉 = 〈x1 + x2〉 ⊕ 〈x3〉 are

prefactorized but their intersection H = 〈x1+x2+x3〉 intersects A and B trivially, hence

H cannot be prefactorized. If we choose F to be a field of prime order, H1 and H2 are

minimal subject to containing H and being prefactorized while the factorizer of H is G

by Lemma 1.2.1.

However if the group G is the product of its subgroups A and B and H ≤ G, let

S =
{
S ≤ G | H ≤ S and S is prefactorized

}
.

We call the minimal elements of S prefactorizers of H in G. Note, however, that unlike

factorizers, prefactorizers need not exist if the group G is infinite.

1.2.4 Lemma. Let the group G be the product of its subgroups A and B. for two

subgroups A and B.

(i) If H ≤ G and S is a prefactorizer of H in G, then S = XS(H) ≤ XG(H).

(ii) If N is a normal subgroup of G and S is a prefactorizer of N in G, then S has

a triple factorization S = (A ∩ S)(B ∩ S) = (A ∩ S)N = (B ∩ S)N .

Proof. (i) If S is a prefactorizer of H in G, then XS(H), the factorizer of H with

respect to the factorization S = (S ∩ A)(S ∩ B) of S, is a prefactorized subgroup of G

contained in S. Therefore we have XS(H) = S by the minimality of S. Since XG(H) is

factorized, XG(H)∩S is prefactorized by Lemma 1.1.6 and H ≤ XG(H)∩S ≤ S whence

S = XG(H) ∩ S by the definition of S.

(ii) This follows directly from the fact that S = XS(N) and the characterization

of XN(S) given in Lemma 1.2.1.
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1.3 Classes of groups and factorizations

A class C of groups is a class in the set-theoretical sense whose elements are groups and

that satisfies the condition: if G ∈ C and H ∼= G, then H ∈ C. In other words, a class of

groups is the union of isomorphy classes of groups.1 Following Doerk and Hawkes [13],

Chapter II, a closure operation C is a map

C:
{
group classes

}
→

{
group classes

}

such that C∅ = ∅ and for every class C of groups, C ⊆ CC and CC = C(CC) and if D is

a class of groups with C ⊆ D, then CC ⊆ CD.

We introduce the following closure operations on classes of groups

QC =
{
G/N | G ∈ C, N ! G

}

SC =
{
H | ∃ G ∈ C such that H ≤ G

}

SnC =
{
S | ∃ G ∈ C such that S "" G

}

R0C =
{
G | ∃ N1, . . . , Nr ! H with G/Ni ∈ C and

⋂r
i=1 Ni = 1

}

D0C =
{
G | ∃ G1, . . . , Gr ∈ C with G = /\r

i=1 Gi

}

N0C =
{
G | ∃ S1, . . . , Sr "" H : Si ∈ C, G = 〈S1, . . . , Sr〉

}

EΦC =
{
G | G/N ∈ C for some N ! G with N ≤ Φ(G)

}

If C is a closure operation and C is a class of groups, we say that C is C-closed if

CC = C; if D is another closure operation, we define CDC = C(DC); observe that the latter

class need not be D-closed. Therefore we define 〈C,D〉C to be the smallest class of groups

that is C-closed and D-closed. We also recall that SD0 = 〈S,D0〉 and that a SD0-closed class

is R0-closed.

A formation F is a class of groups that is Q-closed and R0-closed. If C is any class of

groups, QR0C is the smallest formation containing C and QSD0C is the smallest subgroup-

closed formation containing C. A class C of groups is said to be saturated if it is EΦ-closed.

If C is a class of groups, define

PC =
{
G | G/N ∈ C whenever G/N is primitive for an N ! G

}

(recall that a group is said to be primitive if it has a maximal subgroup whose core

is trivial; see also Section 3.2). A class H of finite groups is called a Schunck class

if it is PH = H, i.e. the finite group G belongs to H if every primitive epimorphic

1 Some authors impose the additional condition on a class of groups that it must contain the class of
groups with one element. We do not make such an assumption.
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image of G lies in H. Schunck classes are Q-closed and D0-closed, and every saturated

formation of finite groups is a Schunck class. It should be observed that P is not a closure

operation, but PQ is; moreover for any class C of groups, PQC is the smallest Schunck

class containing C.

The following simple lemma is basic when dealing with Schunck classes.

1.3.1 Lemma. Let Z be a Q-closed class of finite groups. If H is a Schunck class,

then a group of minimal order in Z \ H is primitive.

Proof. Let G be a group of minimal order that belongs to Z \H. Since Z is Q-closed,

G/N ∈ Z for every normal subgroup and so for every N ,= 1, we have G/N ∈ H by the

minimality of G. Since the group G does not belong to H, it must be primitive by the

very definition of a Schunck class.

Let G be a finite group and C a class of groups. If C is R0-closed, let GC denote the

intersection of all normal subgroups N of G such that G/N ∈ C. Then G/GC ∈ R0C = C

and we call GC the C-residual of G; GC is obviously a characteristic subgroup of G.

Similarly, if C is N0-closed, then the subgroup generated by all subnormal C-subgroups

of G is a (characteristic) C-subgroup of G which is called the C-radical of G and is

denoted by GC.

For any class of groups C, we define the characteristic char(C) of C to be the set of

primes p such that C contains a cyclic p-group, and for every set π of primes, we define

Cπ =
{
G ∈ C | σ(G) ⊆ π

}
.

The following lemma shows in particular that the class of finite groups that are the

product of (two) nilpotent subgroups is Q-closed and D0-closed.

1.3.2 Lemma. Suppose that X and Y are classes of groups and let

Z =
{
G | ∃ A, B ≤ G with A ∈ X and B ∈ Y such that G = AB

}
.

(i) If X and Y are Q-closed, then Z is Q-closed.

(ii) If X and Y are D0-closed, then Z is D0-closed.

Proof. (i) Let G ∈ Z, then G is the product of two subgroups A and B with A ∈ X

and B ∈ Y. Now if N ! G, then G/N is the product of its subgroups AN/N and BN/N

by Lemma 1.2.2. Now by an isomorphism theorem, AN/N ∼= A/A ∩ N ∈ QX = X and

similarly BN/N ∈ Y, proving that G/N ∈ Z.

(ii) Let G = /\ r
i=1 Gi and suppose that Gi ∈ Z for i = 1, . . . , r. Then each Gi is the

product of two subgroups Ai and Bi with Ai ∈ X and Bi ∈ Y. Now A = /\ r
i=1 Ai ∈ D0X =
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X and B = /\r
i=1 Bi ∈ D0Y = Y. Since the subset AB of G = /\ r

i=1 Gi clearly contains all

Gi, G is the product of the X-group A and the Y-group B.

Combining Lemma 1.3.1 and Lemma 1.3.2, we obtain

1.3.3 Lemma. Let X and Y be Q-closed classes of groups and let Z be the class of

finite groups that are the product of an X-group with a Y-group. If H is a Schunck class,

then a group of minimal order in Z \ H is primitive.

1.3.4 Lemma. Let G be a finite group and suppose that C is an R0-closed class of

groups. If X is a subgroup of the group G such that XN1/N1 and XN2/N2 ∈ C for two

normal subgroups N1 and N2 of G with N1 ∩ N2 = 1, then X ∈ C.

Proof. We have XNi/Ni
∼= X/X ∩ Ni ∈ F and (X ∩ N1) ∩ (X ∩ N2) = 1, therefore

X ∈ C.

Remark. This can be used to show that there is even some weak form of R0-closure

of the product of an X-group and a Y-group in case the classes X and Y are R0-closed: if

the group G is the product of its subgroups A and B and there are normal subgroups N1

and N2 with N1 ∩N2 = 1 and such that G/Ni is the product of the X-subgroup ANi/Ni

and the Y-subgroup BNi/Ni for i = 1, 2, then G is the product of the X-subgroup A

and the Y-subgroup B.

A dual of the following statement due to Lockett can be found in [13], II.2.12:

1.3.5 Lemma. Let G be a finite group and suppose that the class F is a Fitting

formation, i.e. a 〈Q,R0,Sn,N0〉-closed class of groups.

(i) If N1 and N2 are two normal subgroups of G with N1 ∩ N2 = 1 and Ri/Ni ∈ F

for i = 1, 2, then R1 ∩ R2 ∈ F.

(ii) If R1/N1 and R2/N2 are the F-radicals of G/N1 and G/N2 respectively, then

R1 ∩ R2 is the F-radical of G.

Proof. (i) We have

(R1 ∩ R2)N1/N1 = (R1 ∩ R2N1)/N1 ! R1/N1

so that

(R1 ∩ R2)/(R1 ∩ R2 ∩ N1) ∼= (R1 ∩ R2)N1/N1 ∈ F.

Similarly,

(R1 ∩ R2)/(R1 ∩ R2 ∩ N2) ∈ F

so that also R1 ∩ R2 ∈ F because (R1 ∩ R2 ∩ N1) ∩ (R1 ∩ R2 ∩ N2) = 1.
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(ii) Let R denote the F-radical of G. Then RNi/Ni is a normal F-subgroup of G/Ni

for i = 1, 2, therefore R ≤ R1 ∩R2. On the other hand, the normal subgroup R1 ∩R2 is

contained in F by (i), proving the other inclusion.



Chapter 2

Factorizations of finite soluble groups

2.1 Hall subgroups and Hall systems

Finite soluble groups can be characterized by the fact that they possess Hall π-subgroups

for every set π of primes (Hall [24]; see also Doerk and Hawkes [13], Sections I.3 and I.4).

Note that we also consider G itself and the unit subgroup as Hall subgroups of G for

the sets ±"P and ∅ of primes respectively.

If G is a finite soluble group, a set Σ of Hall subgroups of G is called a Hall system

of G if Σ contains a Hall π-subgroup of G for every set of primes π and HK = KH for

all H , K ∈ Σ, we have HK = KH (observe that this implies that Σ contains exactly

one Hall π-subgroup for every set of primes π by Lemma 1.1.1).

Given a Hall p′-subgroup Gp′ of G for every prime p, it is easy to see that

Gπ =
⋂

π⊆p′

Gp′

is a Hall π-subgroup of G and the set

Σ =
{
Gπ | π a set of primes

}

is a Hall system of G. The set
{
Gp′ | p a prime

}
is called a complement basis of Σ.

Consequently, Hall systems always exist in finite soluble groups. Moreover, any two Hall

systems are conjugate, i.e. if Σ and T are Hall systems, then there is g ∈ G such that

T = Σg =
{
Hg | H ∈ Σ

}
.

Also, the set
{
Gp | p a prime

}
containing exactly one Sylow p-subgroup Gp of G for

each prime is called a Sylow basis if GpGq = GqGp whenever p and q are distinct primes.

In this case, a Hall system of G can be obtained by defining the Gπ’s to be the product

of all Gp where p ∈ π.

If S is a subgroup of the finite soluble group G, then a Hall system Σ is said to reduce

into S if for every set of primes π, the intersection of the Hall π-subgroup Gπ ∈ Σ with

S yields a Hall π-subgroup of S; in this case, the set

Σ ∩ S =
{
Gπ ∩ S | Gπ ∈ Σ

}
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is a Hall system of S. Conversely, it can be shown that every Hall system Σ∗ of S can

be extended to a Hall system Σ of G, i.e. every subgroup contained in Σ∗ is contained

in some subgroup contained in Σ.

Following Hall [25], a group is said to satisfy the property Eπ (existence) if it pos-

sesses a Hall π-subgroup; it satisfies Cπ (conjugacy) if it satisfies Eπ and all its Hall π-

subgroups are conjugate; finally, it satisfies Dπ (dominance) if it has Cπ and moreover

every π-subgroup is contained in some Hall π-subgroup. Thus the finite soluble groups

are precisely the finite groups that satisfy Dπ for all sets π of primes.

The following lemma which relates the Sylow structure of a group G to a given factor-

ization of G was first proved by Wielandt [44] for Sylow subgroups and Hall p′-groups

of soluble groups:

2.1.1 Lemma. Let G = AB be a finite group satisfying Dπ. If Aπ and Bπ are Hall π-

subgroups of A and B respectively, then there are a ∈ A and b ∈ B such that Aa
πB

b
π is

a Hall π-subgroup of G. Furthermore, A∩B possesses Hall π-subgroups one of which is

Aa
π ∩ Bb

π.

Proof. By the property Dπ, the subgroup Aπ is contained in a Hall π-subgroup Gπ

and also Bπ is contained in a Hall π-subgroup which is conjugate to Gπ by the property

Dπ, so we have Bπ ≤ Gg
π for a suitable g ∈ G. Write g = ab−1, then Aa

π ≤ Ga
π and

Bb
π ≤ Ggb

π = Ga
π. Therefore, replacing Aπ, Bπ and Gπ by suitable conjugates, we may

suppose that Aπ and Bπ are contained in Gπ.

By Lemma 1.1.1, the order of the group G is

|G| =
|A||B|
|A ∩ B|

;

thus the order of a Hall π-subgroup (which equals the π-part of |G|) is

|Gπ| =
|Aπ||Bπ|
|A ∩ B|π

where |A∩B|π is the π-part of |A∩B|. Now the order of Aπ∩Bπ is a π-number dividing

|A ∩ B|π; hence

|Gπ| ≤
|Aπ||Bπ|
|Aπ ∩ Bπ|

= |AπBπ|.

Since we also have AπBπ ⊆ Gπ, we must have AπBπ = Gπ as required. So |Gπ| = |AπBπ|,
from which we deduce that |A ∩ B|π = |Aπ ∩ Bπ|; therefore the subgroup Aπ ∩ Bπ is a

Hall subgroup of A ∩ B.

Recall that as a consequence of the Feit-Thompson theorem [14], every π-separable

group satisfies Dπ and that the class of π-separable groups is subgroup-closed so that

every π-separable group satisfies the above lemma.
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In the case of a soluble group, one is interested in Hall systems rather than single Hall

subgroups. The following proposition states the existence of Hall systems in which every

Hall subgroup is of the form just described.

2.1.2 Proposition. If the soluble group G is the product of its subgroups A and B,

then there is a Hall system of G of the form
{
AπBπ | π a set of primes

}
which reduces

into A and B.

Proof. G is soluble, hence satisfies Dπ for every set π of primes. By the preceding

proposition, for every prime p there is a Hall p′-subgroup Gp′ of G of the form Gp′ =

Ap′Bp′ for suitable Hall p′-subgroups Ap′ and Bp′ of A and B respectively.

Extend the complement bases
{
Gp′

}
,
{
Ap′

}
and

{
Bp′

}
to Hall systems Σ =

{
Gπ

}
,{

Aπ

}
and

{
Bπ

}
of G, A and B respectively, then it is clear that Aπ ≤ A ∩ Gπ and

Bπ ≤ B ∩Gπ for every set π of primes; since Aπ and Bπ are Hall subgroups of A and B

respectively, we have Aπ = A∩Gπ and Bπ = B∩Gπ and as in the proof of Lemma 2.1.1,

Gπ = AπBπ. So Σ is the required Hall system.

Remark. By induction on the number of factors, the last proposition as well as

Lemma 2.1.1 can be extended to finite soluble groups that are the product of any (finite)

number of subgroups.

2.2 Products of subgroups of coprime order

Let the group G be the product of its subgroups A and B. We establish some criteria for

certain subgroups of G to be factorized or prefactorized, based on the orders or indices

of A and B.

The next lemma is well-known:

2.2.1 Lemma. If A and B are subgroups of the finite group G such that |G : A| and

|G : B| are coprime, then G = AB.

Proof. Under the hypothesis of the lemma, we have |G : A ∩ B| = |G : A| · |G : B|;
together with the formula from Lemma 1.1.1, we obtain that |AB| = |G| and thus we

have G = AB.

Recall that a subnormal subgroup S of a group G has subnormal defect n if n is the

least integer such that there is a subnormal series of G of the form

G = S0 # S1 # · · · # Sn = S.
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Such a chain can be obtained by recursively defining S0 = G and Si+1 = SSi for all

positive integers i (see Doerk and Hawkes [13], A.14.7 or Robinson [43], Chapter 13.1).

2.2.2 Lemma. Let the group G be the product of its subgroups A and B. and suppose

that |G : A| and |G : B| are finite.

(i) if N ! G and X = XG(N) denotes its factorizer, then |N : N ∩A| = |X : X ∩A|
divides |G : A| and |N : N ∩ B| = |X : X ∩ B| divides |G : B|.

(ii) Every subgroup S of G contains a prefactorized subgroup N ! S of finite index;

moreover N ≤ A ∩ B.

(iii) If the indices of A and B are coprime, then every subnormal subgroup of G is

prefactorized.

Proof. (i) By Lemma 1.2.1, we have AX = AN which shows that AX is a subgroup

of G. Therefore

|X : X ∩ A| = |AX : A| = |AN : A| = |N : N ∩ A|

which divides |G : A|, similarly for B.

(ii) Let S be a subgroup of G. Since the indices of A and B are finite, so is |G : A∩B|
and thus also |G : (A ∩ B)G|. Then also |S : S ∩ (A ∩ B)G| is finite; moreover N =

S ∩ (A ∩ B)G is trivially prefactorized and so N is the required normal subgroup of S.

(iii) As a first case, assume that S ! G; then S/N is finite where N = S ∩ (A ∩B)G;

moreover since N is prefactorized, by Lemma 1.2.2, S is a prefactorized subgroup of G/N

if (and only if) S/N is prefactorized in G/N . Thus we may assume w.l.o.g. that N = 1

and that S is finite.

Now by part (i), |S : S ∩A| divides |G : A| and |S : S ∩B| divides |G : B|. Therefore

the indices of A ∩ S and B ∩ S are coprime and we have S = (A ∩ S)(B ∩ S) by

Lemma 2.2.1.

There remains the case when S is a nonnormal subnormal subgroup of defect n > 1

in G: we have already proved that K = SG ! G is prefactorized and that the indices

of K ∩ A and K ∩ B are coprime. Since the subnormal defect of S in K is n − 1, by

induction on the subnormal defect of S, the subgroup S is a prefactorized subgroup

of N , hence is prefactorized in G by Lemma 1.1.6.

For a periodic group G, i.e. a group in which every element has finite order, we define

σ(G) to be the set of primes that divide the order of an element of G. If G is finite, then

clearly σ(G) is the set of prime divisors of |G|. If π is a set of primes, the group G is

called a π-group if σ(G) ⊆ π, that is, if the order of every element is divisible only by

primes in π.
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2.2.3 Lemma. Let G = AB be a (possibly infinite) group and let N be a normal sub-

group of G. If X denotes the factorizer of N in G, then σ(X/N) ⊆ σ(AN/N)∩σ(BN/N).

Proof. By Lemma 1.2.1, we have X = (A ∩ BN)N = (AN ∩ B)N and so X/N ≤
AN/N and X/N ≤ BN/N . Therefore σ(X/N) ⊆ σ(AN/N) ∩ σ(BN/N).

2.2.4 Corollary. Let the group G be the product of its subgroups A and B. If A and

B have coprime orders, then every subnormal subgroup of G is factorized.

Proof. If N ! G, this follows from lemma since we must have X/N = 1 and therefore

N = XG(N) is factorized. If S is subnormal in G, the result follows by induction on the

defect of S in G like in the proof of Lemma 2.2.2.

Using transfinite induction, the last result can be extended from subnormal subgroups

to descendant subgroups, observing that the intersection of arbitrarily many factorized

subgroups is factorized by Lemma 1.1.6.

Under certain additional hypotheses, and in particular when G is finite and soluble,

it is possible to extend Lemma 2.2.2, (iii) and Corollary 2.2.4 to a statement about

all subgroups of the group G: there are factorized (prefactorized) conjugates for all

subgroups of the finite group.

2.2.5 Lemma. Let G be a finite group which is the product of its subgroups A and B

with (|A|, |B|) = 1 and such that G satisfies Dπ and Dπ′ where π and π′ denote the sets

of prime divisors of |A| and |B| respectively. If S is a subgroup of G which satisfies Eπ

and Eπ′, then S possesses a factorized conjugate Sg, i. e. Sg = (Sg ∩ A)(Sg ∩ B) for a

g ∈ G.

More generally, if H is a factorized subgroup of G that satisfies Dπ and Dπ′ and

contains S, then there is a h ∈ H such that Sh ≤ H is factorized.

Proof. Clearly, A and B are Hall π and π′-subgroups of G. If Sπ and Sπ′ denote the

Hall π- and π′-subgroups of S, then S = SπSπ′. Now Sπ and Sπ′ are contained in Hall

subgroups Ax and By of G where x, y ∈ G. By Lemma 1.1.7, there is a g ∈ G with

Ax = Ag−1
and By = Bg−1

. Then we also have Sg = Sg
πS

g
π′ with Sg

π ≤ A and Sg
π′ ≤ B,

hence Sg = (Sg ∩ A)(Sg ∩ B). Note also that Sg ≥ A ∩ B = 1.

The second statement follows directly from the first, observing that A∩H and B ∩H

are π- and π′-groups respectively.

Note that Lemma 2.2.5 applies in particular to all subgroups of π-separable groups G

when π is the set of prime divisors of |A|. To extend Lemma 2.2.5 to the prefactorized

case, we need the following
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2.2.6 Lemma. Let the group G be the product of its subgroups A and B. If A ≤ A∗

and B ≤ B∗ for two subgroups A∗ and B∗ of G, then every subgroup that is prefactor-

ized with respect to the factorization G = AB is also prefactorized with respect to the

factorization G = A∗B∗ of G.

Proof. Let S be a subgroup of G that is prefactorized with respect to the factorization

G = AB, i.e. S = (S ∩A)(S ∩B). Clearly, S = (S ∩A)(S ∩B) ⊆ (S ∩A∗)(S ∩B∗) ⊆ S,

proving that S = (S ∩ A∗)(S ∩ B∗). Application to the case S = G shows in particular

that G is the product of A∗ and B∗.

It is easy to see that the preceding lemma becomes false if we substitute ‘factorized’

for ‘prefactorized’: choose any group G ,= 1 and let A = 1 and A∗ = B = B∗ = G,

then the unit subgroup is factorized with respect to G = AB but not with respect to

G = A∗B∗.

We can now extend Lemma 2.2.5 to a similar result for prefactorized subgroups;

observe that the next lemma is true for every soluble group G that is the product of two

subgroups which have coprime indices.

2.2.7 Lemma. Let G be a finite soluble group which is the product of its subgroups A

and B and such that (|G : A|, |G : B|) = 1. Let π be a set of primes such that A contains

a Sylow p-subgroup of G for all p ∈ π and B contains a Sylow p-subgroup of G for all

p ∈ π′. If G satisfies Dπ and Dπ′, then for every subgroup S of G there is a prefactorized

conjugate Sg, i. e. Sg = (Sg ∩ A)(Sg ∩ B) for a g ∈ G.

More generally, let H be a prefactorized subgroup of G such that A ∩ H and B ∩ H

have coprime indices. If H satisfies Dπ and Dπ′ and contains S, then there is a h ∈ H

such that Sh ≤ H is prefactorized.

Proof. Since (|G : A|, |G : B|) = 1, the subgroups A and B contain Hall π- and

π′-subgroups Aπ and Bπ′ respectively of G. Since the indices of Aπ and Bπ′ are coprime,

we have G = AπBπ′ by Lemma 2.2.1 and so every subgroup of S possesses a conjugate

which is factorized with respect to the factorization G = AπB
′
π by Lemma 2.2.7. So by

Lemma 2.2.6, this conjugate is prefactorized with respect to the factorization G = AB.

The second statement follows from the first by considering H instead of G.
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2.3 Groups with many factorized subgroups

Let the finite soluble group G be the product of its subgroups A and B. We have seen

in Lemma 2.2.5 and Lemma 2.2.7 that every subgroup S of G has a conjugate which

is factorized (prefactorized) if the orders (indices) of A and B are coprime; more pre-

cisely, this conjugate can already be found in certain factorized (prefactorized) subgroups

containing S.

Conversely, if G is a soluble group which is the product of two subgroups A and B

in which every subgroup has a factorized (prefactorized) conjugate in every factorized

(prefactorized) subgroup of G, then we will show that the orders (the indices) of A

and B are coprime. Observe that for finite soluble groups, the condition that A and B

have coprime indices is equivalent to the condition that A and B contain Hall π and

π′-subgroups of G for a suitable set π of primes.

First, we deal with the nilpotent case:

2.3.1 Proposition. Suppose that the finite nilpotent group G is the product of its

subgroups A and B and that every subgroup of G has a prefactorized conjugate. Then A

and B contain Hall π-and π′-subgroups of G for some set of primes π. In particular, if

G is a p-group for some prime p, then G = A or G = B.

Proof. As a first step, we prove the proposition for p-groups G. Suppose that the

proposition is false and let G be a counterexample. Clearly, if G = A, the proposition

is fulfilled with π = ±"P; similarly if G = B (let π = ∅). So we must have A < G and

B < G. Since G is nilpotent, A and B are contained in maximal normal subgroups A∗

and B∗ of G. By Lemma 2.2.6, every subgroup that is prefactorized with respect to

the factorization G = AB of G is also prefactorized with respect to the factorization

G = A∗B∗ so that G is also a counterexample with respect to the latter factorization.

Therefore we may suppose w.l.o.g. that A and B are maximal normal subgroups of G.

Let N = A ∩ B, then G/N is the direct product of the two cyclic groups AN/N and

BN/N , both of order p: A/N = 〈a〉N/N and B/N = 〈b〉N/N for suitable a ∈ A and

b ∈ B. Now the diagonal subgroup D/N = 〈ab〉N/N is also a maximal normal subgroup

of G/N which is not prefactorized in G/N since it intersects AN/N and BN/N trivially.

Since N is prefactorized, by Lemma 1.2.2, D cannot be a prefactorized subgroup of G.

So D, being a normal subgroup of G, does not have a prefactorized conjugate. This

contradiction shows that we must have G = A or G = B.

Now let G be any finite nilpotent group and suppose that P is a Sylow p-subgroup

of G for some prime p. If S is a subgroup of P , then every conjugate of S in G is already

conjugate to S in P since P is centralized by the Hall p′-subgroup of G. On the other
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hand, we know by Proposition 2.1.2 that P = ApBp where Ap and Bp are the Hall p-

subgroups of A and B respectively. So we may apply the first part to P and obtain that

P = Ap or P = Bp. Therefore every Sylow subgroup of G is contained in A or B. This

shows that if π is the set of primes p such that A contains a Sylow p-subgroup of G,

then A contains a Hall π-subgroup and B contains a Hall π′-subgroup of G.

To analyse the case when every subgroup has a factorized conjugate, we need the

following simple

2.3.2 Lemma. Suppose that the finite group G is the product of its subgroups A

and B. If A and B have coprime indices and A ∩ B = 1, then A and B have coprime

orders.

Proof. This follows at once from Lemma 1.1.1.

Then we obtain

2.3.3 Corollary. Suppose that the finite nilpotent group G is the product of its sub-

groups A and B and that every subgroup of G has a factorized conjugate. Then A and B

have coprime orders, hence are Hall subgroups of G.

Proof. Since the unit subgroup is normal and thus factorized, by Lemma 1.1.5, we

must have A ∩ B = 1. So the result follows from Proposition 2.3.1 and Lemma 2.3.2.

We formulate the result of this section for prefactorized subgroups first.

2.3.4 Proposition. Suppose that the finite group G is the product of its subgroups A

and B.

(i) If for every prefactorized subgroup H of G, every subgroup S ≤ H has a prefac-

torized conjugate in H, then A and B have coprime indices; moreover if H is a

prefactorized subgroup of G, then H ∩ A and H ∩ B have coprime indices in H.

(ii) Suppose that the indices of A and B in G are coprime and that every subgroup

of G satisfies Dπ and Dπ′ for a set π of primes such that A contains a Sylow p-

subgroup of G for every p ∈ π and B contain Sylow p-subgroups of G for all p ∈ π′.

Let H be a prefactorized subgroup of G satisfying Dπ and D′
π. If |H : H ∩A| and

|H : H ∩ B| are coprime and S ≤ H, then there is a h ∈ H such that Sh ≤ H is

prefactorized.

Proof. (i) Let p be a prime, then since every finite group satisfies Dp by Sylow’s theo-

rem, by Lemma 2.1.1, G possesses a prefactorized Sylow p-subgroup P = (A∩P )(B∩P ).

Now by hypothesis, every subgroup of P has a prefactorized conjugate in P , and so by

Proposition 2.3.1, P is contained in A or B. If π is the set of primes for which A contains
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a Sylow p-subgroup of G, then B contains a Sylow p-subgroup for all remaining primes

p ∈ π′. So the index of A is a π′-number while that of B is a π-number.

Since every prefactorized subgroup H of G likewise satisfies the hypotheses of (i), it

is clear that also A ∩ H and B ∩ H have coprime indices in H .

(ii) This has already been proved in Lemma 2.2.7.

Unfortunately, the statements (i) and (ii) are not equivalent. However, it should be

noted that (i) implies (ii) if the group G is finite and soluble since in this case, G satisfies

Dπ for every set of primes π.

In the case when A and B have coprime orders, a much more satisfactory result can

be proved, which even holds for arbitrary finite groups.

2.3.5 Theorem. Let the finite soluble group G be the product of its subgroups A

and B. Then the following statements are equivalent:

(i) For every factorized subgroup H of G and every subgroup S ≤ H, there is an

h ∈ H such that Sh is factorized.

(ii) The subgroups A and B of G have coprime orders and every subgroup of G sat-

isfies Dπ and Dπ′, where π is the set of prime divisors of A.

Proof. (i) ⇒ (ii). From Proposition 2.3.4 and Lemma 2.3.2, we obtain that A and B

have coprime orders. Since the property (i) is inherited by subgroups and the situation

is completely symmetrical for the sets π and π′, it remains to show that G itself satisfies

Dπ: it is clear that G possesses a Hall π-subgroup, namely A. If P is a π-subgroup of G,

there is a conjugate P g of P for some g ∈ G, with P g = (P g ∩A)(P g ∩B) and since B is

a π′-group, we have P g ∩B = 1 and so P g is contained in A. So the conjugates of A are

the maximal π-subgroups of G and every π-subgroup is contained in a conjugate of A;

hence G satisfies Dπ.

(ii) ⇒ (i). This is the result of Lemma 2.2.5.

For an additional result in the case when the finite soluble group G is the product of

two nilpotent subgroups, see Section 3.3.



Chapter 3

Subgroups of products
of two finite nilpotent groups

3.1 First results about products of nilpotent subgroups

The following theorem, known as the Kegel-Wielandt theorem, is probably the most

important theorem about finite groups that are the product of two finite nilpotent sub-

groups; note that this theorem remains true for products of any finite number of nilpotent

subgroups.

3.1.1 Theorem (Wielandt [45] and Kegel [33]). Let the finite group G be the prod-

uct of its nilpotent subgroups A and B. Then G is soluble.

A proof of the Kegel-Wielandt theorem can also be found in [4], Section 2.4 and

in [31], VI, § 4.

3.1.2 Proposition. Let G be a finite group. If A, B ≤ G such that ABg = BgA for

all g ∈ G, then:

(i) (Kegel [33]) if AB < G, then ABG < G or AGB < G; in particular, A or B is

contained in a proper normal subgroup of G.

(ii) (Wielandt [46]) [A, B] ! AAB ∩ BAB "" G.

Proof. (i) Suppose that ABG = AGB = G. We have to show that G = AB. We

proceed by induction on |G : A| + |G : B|, observing that the statement is trivial if

G = A = B. Also, (i) is true if A is normal in G, we may assume that Ax ,= A for some

x ∈ G.

Since every conjugate of B permutes with both A and Ax, by Lemma 1.1.3, B also

permutes with A1 = 〈A, Ax〉. Then we have G = A1B by induction hypothesis. Since

x ∈ G = ABG, we can write x = aby with a ∈ A, b ∈ B and y ∈ G. and w.l.o.g., we may

assume that a = 1.

By Lemma 1.1.7, also G = A1B
y = 〈A, Ax, By〉 = ABy and thus also G = AB.

(ii) If G = AB, then it is clear that [A, B] and AAB ∩BAB are normal subgroups of G

and that [A, B] ≤ AAB ∩ BAB. Therefore we may suppose that AB < G.
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From (i), we infer that AGB < G or ABG < G; w.l.o.g. suppose the former. Then by

finite induction, [A, B] ! AAB∩BAB ! AGB and so also [A, B] ! AAB∩BAB ! AG ! G

which shows that the subgroups in question are subnormal in G.

We mention an important special case of the previous proposition:

3.1.3 Corollary. Let G = AB be a finite group that satisfies Dπ for a set π of

primes. If A and B have normal Hall π-subgroups Aπ and Bπ, then:

(i) If G is not a π-group, then Aπ or Bπ is contained in a proper normal subgroup

of G.

(ii) The subgroups [Aπ, Bπ] and ABπ
π ∩ BAπ

π are subnormal π-subgroups of G.

(iii) If Aπ and Bπ are nilpotent, then the normal Hall π-subgroup Aπ ∩ Bπ of A ∩ B,

and thus every π-subgroup of A ∩ B, is a subnormal subgroup of G.

Proof. By Lemma 2.1.1, the group G possesses a Hall π-subgroup of the form Aa
πB

b
π

for some a ∈ A and b ∈ B. Since the Hall π-subgroups of A and B are normal, we

have Aa
πB

b
π = AπBπ. Thus by Lemma 1.1.7, every conjugate of Aπ permutes with every

conjugate of Bπ, and consequently [Aπ, Bπ] and ABπ
π ∩ BAπ

π are subnormal π-subgroups

of G by Proposition 3.1.2.

3.1.4 Proposition (Pennington [40]). Let G = AB be a finite group satisfying Dπ.

If A and B have normal Hall π-subgroups, then Oπ(G) =
(
A∩Oπ(G)

)(
B ∩Oπ(G)

)
and

Aπ ∩ Bπ ≤ Oπ(G).

Proof. Write O = Oπ(G). Since G satisfies Dπ, by Lemma 2.1.1, there is a Hall π-

subgroup of G of the form H = AπBπ. We show that O is a factorized subgroup of H =

AπBπ (which does not, however, imply that O is factorized in G because H is not

necessarily factorized).

Consider the group G/O: since the normal Hall π-subgroups AπO/O and BπO/O are

normal in AO/O and BO/O respectively, every conjugate of AπO/O permutes with

BπO/O and so by Proposition 3.1.2, AπO/O∩BπO/O is a subnormal π-subgroup of G.

Therefore AπO ∩ BπO ≤ O, showing that O = AπO ∩ BπO. Thus by Lemma 1.2.1, O

equals its factorizer in H , i.e. O is factorized in H as required.

This leads to the following

3.1.5 Theorem (Amberg [1], Pennington [40]). If G is the product of two finite

nilpotent subgroups A and B, then F (G), the Fitting subgroup of G, is factorized. There-

fore the subgroup A ∩ B is subnormal in G.
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Proof. Since F (G) is the product of all Op(G) and by Sylow’s theorem, G satisfies

D{p} for all primes p dividing the order of G, it is clear from the preceding Proposi-

tion 3.1.4 that F (G) is prefactorized. Also, A∩B is nilpotent, hence is the direct product

of all Ap ∩ Bp and so F (G) also contains A ∩ B. This also shows that A ∩ B "" F (G)

is subnormal in G.

We will see in Section 3.6 that the last two results can be generalized to radicals with

respect to arbitrary Fitting formations.

Also, the fact that A∩B, and hence every subgroup of A∩B, is a subnormal subgroup

of G has lead to the following result of Maier [36] and Wielandt [47]: they show that if

the finite group G is the product of two subgroups A and B and S ≤ A ∩ B such that

S "" A and S "" B, then S "" G. Further results in this direction can also be found

in [38] and [11].

3.1.6 Corollary. If the finite group G is the product of its nilpotent subgroups A

and B and N ! G, then the factorizer and every prefactorizer of N is subnormal in G.

Proof. Consider the factor group G/N . Then the subgroup AN/N∩BN/N is subnor-

mal in G/N the preceding theorem. Therefore the subgroup X = AN∩BN is subnormal

in G. On the other hand, by Lemma 1.2.1, X equals the factorizer of N in G.

For prefactorizers S, the result follows from the fact that N ≤ S ≤ X and X/N is

nilpotent.

3.1.7 Corollary. Let G be a finite group which is the product of its nilpotent sub-

groups A and B. If G possesses a nilpotent normal subgroup N such that G = AN = BN ,

then G is nilpotent.

Proof. If N is a nilpotent normal subgroup of G, then its factorizer (with respect to

the factorization G = AB) is contained in the factorized subgroup F (G) of G. But by

Lemma 1.2.1, the factorizer of N equals AN ∩ BN = G and so G is nilpotent.

For generalizations of the last result to certain classes of infinite groups, we refer the

reader to Section 6.3 of Amberg, Franciosi and de Giovanni [4]. We will also see in

Corollary 3.5.2 that in fact N does not necessarily have to be normal in G.

The following proposition shows that every finite group G that is the product of two

proper nilpotent subgroups has a proper factorized normal subgroup.

3.1.8 Proposition (Kegel [33]). If the finite group G is the product of its nilpotent

subgroups A and B and A ,= B, then A or B is contained in a proper normal subgroup

of G.
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Proof. If G = 1, there is nothing to prove. Therefore suppose by finite induction that

the proposition is true for all groups of smaller order than |G| and let N be a minimal

normal subgroup of G. If AN ,= BN , then by induction hypothesis, AN/N or BN/N is

contained in a proper normal subgroup of G/N and therefore also A or B is contained

in a proper normal subgroup of G.

Therefore we may assume that AN = BN = G, and since A, B and N are nilpotent,

G is nilpotent by Corollary 3.1.7. Then, however, at least one of A and B is contained

in a maximal subgroup of G which is normal in G.

Kegel’s result has been extended by Amberg, Franciosi and de Giovanni [3] to certain

classes of (possibly infinite) groups G which are the product of their subgroups A1, . . . , Ar

satisfying some nilpotency condition: if at least one of the subgroups Ai is properly

contained in G, then some Ai is contained in a proper normal subgroup of G. This result

holds in particular if the subgroups Ai are finite and nilpotent.

On the other hand, a similar result about minimal normal subgroups of a product of

finite nilpotent subgroups does not hold: If p is any prime, J. D. Gillam [19] gives an

example of a p-group P of order p6 which is the product of two subgroups A and B but

A and B do not contain normal subgroups of P . This also shows that the centre of P

cannot be prefactorized: since A ∩ Z(P ) and B ∩ Z(P ) are normal subgroup of P , we

must have Z(P ) ,= 1 =
(
A ∩ Z(P )

)(
B ∩ Z(P )

)

We mention a consequence Proposition 3.1.8 that might be of interest.

3.1.9 Proposition. Let G be a finite group. If A and B are nilpotent subgroups of G

such that ABg = BgA for all g ∈ G, then A ∩ B is subnormal in G.

Proof. If A = B (= G), the group G is nilpotent and hence every subgroup of G is

subnormal. Therefore we may suppose that A ,= B and by Proposition 3.1.8, one of the

factors, say A, is contained in a normal subgroup N of G. Now by the modular law, for

all g ∈ G,

A(N ∩ Bg) = N ∩ ABg = N ∩ BgA(N ∩ Bg)A

for all g ∈ G which shows that A permutes with every conjugate of B ∩ N . Therefore

by induction on the order of G, A ∩ B = A ∩ B ∩ N is subnormal in N , hence in G.
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3.2 Primitive groups that are the product

of two nilpotent subgroups

Let G be group that possesses a faithful representation as a a transitive permutation

group on the set X. Recall that G is called primitive if we have |Y | = 1 for every

subset Y of X such that Y g = Y or Y g ∩ Y = ∅ for all g ∈ G. By [43], 7.2.3, G is

primitive if and only if for every x ∈ X, the stabilizer M =
{
g ∈ G | xg = x

}
of x is

a maximal subgroup of G. Since G is transitive, the conjugates of M in G are precisely

the stabilizers of the elements of X, so it is clear that MG = 1. On the other hand, if an

arbitrary group G possesses a maximal subgroup M with MG = 1, then the permutation

representation of G on the cosets of M is clearly faithful and has M as a stabilizer, hence

G is primitive by the theorem stated above.

The next simple lemma gives a sufficient condition for a finite group to be primitive.

Theorem 3.2.2 below will show that this condition is also necessary:

3.2.1 Lemma. Let G be a finite group. If G possesses a maximal subgroup M < G

that supplements every minimal normal subgroup of G, then G is primitive and M is a

stabilizer of G.

Proof. Suppose that MG ,= 1, then MG contains a minimal normal subgroup N of G.

But then N ≤ M = MN = G, contradicting the maximality of M .

The class of finite primitive groups can be divided into three disjoint subclasses as the

following theorem (Baer [6], see also Doerk and Hawkes [13], A.15.2) shows:

3.2.2 Theorem. Let G be a finite group. Then the following statements are equiva-

lent:

(i) G is primitive with stabilizer M ;

(ii) G satisfies one of the following statements:

(1) G has a unique minimal normal subgroup N ; moreover N is abelian, N =

CG(N) and N is complemented by M .

(2) G has a unique minimal normal subgroup N ; N is non-abelian, CG(N) = 1

and N is supplemented by M . Furthermore, if V is a minimal supplement

to N , then N ∩ V ≤ Φ(V ),

(3) G has exactly two isomorphic non-abelian minimal normal subgroups N and

N∗. Moreover CG(N) = N∗ and CG(N∗) = N and N ∼= N∗ ∼= NN∗ ∩ M .

M complements N and N∗, and if V < G supplements N and N∗, then

V complements N and N∗. Also, M ∩ NN∗ is a (normal) subgroup of M

isomorphic with N (and N∗).
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If G is a finite soluble group, clearly every minimal normal subgroup of G is abelian,

so a finite primitive soluble group must belong to the class of groups described in (1)

above.

Primitive finite soluble groups can be characterized in several ways:

3.2.3 Lemma. Let G be a finite soluble group and suppose that N is a minimal nor-

mal subgroup of G whose order is divisible by the prime p. Then the following statements

are equivalent:

(i) G is primitive;

(ii) N = CG(N);

(iii) N = Op(G) for the prime p and Op′(G) = 1;

(iv) N = F (G);

(v) Φ(G) = 1 and N is the only minimal normal subgroup of G.

Proof. Note first that N is elementary abelian of exponent p since G is soluble.

(i) ⇒ (ii): This follows directly from Theorem 3.2.2 since N is abelian.

(ii) ⇒ (iii): If N = CG(N) and N∗ ,= N is a minimal normal subgroup, then [N.N∗] ≤
N ∩ N∗ = 1, which shows that N∗ ≤ CG(N) = N , a contradiction. Therefore N is the

unique minimal normal subgroup of G. So if Op′(G) ,= 1, we must have N ≤ Op′(G) which

is, of course, impossible, N being a p-group. Therefore Op′(G) = 1. Let O = Op(G), then

N ≤ O; moreover O is nilpotent and so Z(O) ,= 1. Z(O) is characteristic in O, hence

normal in G so that N ≤ Z(O) and so O ≤ CG(N) = N , proving that N = O = Op(G).

(iii) ⇒ (iv): Clearly, the Hall p′-subgroup of F (G) is characteristic in F (G), so it

is normal in G and hence contained in Op′(G) = 1. Therefore F (G) is a p-group and

F (G) = Op(G) = N .

(iv) ⇒ (v): Φ(G) is a characteristic subgroup of G properly contained in F (G) = N .

Therefore we must have Φ(G) = 1. Clearly, every minimal normal subgroup of the soluble

group G is abelian, therefore contained in the Fitting subgroup of G. Since F (G) = N

is itself a minimal normal subgroup, it follows that N is the unique minimal normal

subgroup of G.

(v) ⇒ (i): Since Φ(G) = 1, there is a maximal subgroup M of G which does not

contain N . If MG ,= 1, the normal subgroup MG must contain the unique minimal

normal subgroup N of G. But then N ≤ M , a contradiction. So we must have MG = 1

and G is primitive.

We will now analyse primitive groups G which are the product of two finite nilpotent

subgroups. The main result, namely that if G is non-nilpotent, then one of these sub-

groups is a Sylow p-subgroup and the other a Hall p′-subgroup, is due to Gross [22].
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First, we prove a generalization of this result which is based on the proof of Gross’ state-

ment that can be found in [4], Lemma 2.5.2. For the definition of a π-separable group,

we refer the reader to Section 4.1.

3.2.4 Lemma. Let the π-separable group G be the product of its subgroups A and B

and suppose that A and B have normal Hall π′-subgroups. Furthermore, suppose that G

does not contain nontrivial normal π′-subgroups and let O = Oπ(G). Then

(i) CG(O) ≤ O;

(ii) if O is the unique minimal normal subgroup of G, then A or B is a π-group;

(iii) if in addition A and B have normal Hall π-subgroups, then AO/O and BO/O

are Hall π- and Hall π′-subgroups of G/O and O is factorized;

(iv) if in addition, O is abelian and O < G, then A and B are Hall π- and Hall π′-

subgroups of G. Thus every subgroup of G has a factorized conjugate (in partic-

ular, every normal subgroup of G is factorized), and if G = AC = BC for some

C ≤ G, then G = C.

Proof. (i) This is a result of Hall and Higman [26], Lemma 1.2.3.

(ii) Let Aπ′ and Bπ′ be the Hall π′-subgroups of A and B respectively, then Aπ′Bπ′

is a Hall π′-subgroup of G by Lemma 2.1.1, because every π-separable group satisfies

Dπ and Dπ′, and since Aπ′ and Bπ′ are normal subgroups of A and B respectively,

we have Aπ′B
g
π′ = Bg

π′Aπ′ for all g ∈ G by Lemma 1.1.7. Now by Proposition 3.1.2,

[Ag
π′ , B

g
π′] is a subnormal π′-subgroup of G and as such it is contained in Oπ′(G) = 1.

Therefore also [AG
π′ , BG

π′] = 1. If, say, B is not a π-group, then BG
π′ ,= 1, thus O ≤ BG

π′

and [Aπ′ , O] ≤ [AG
π′, BG

π′] = 1. Therefore, Aπ′ ≤ CG(O) ≤ O and A must be a π-

group.

(iii) Suppose w.l.o.g. that A is a π-group. As above, G has a Hall π-subgroup of the

form AπBπ = ABπ by Lemma 2.1.1. Now Bπ ! B and therefore BG
π = BA

π which

is contained in the π-group ABπ. So BG
π is a normal π-subgroup of G, and Bπ must

be contained in O. Hence AO/O is a π-group and BO/O is a π′-group. Moreover by

Corollary 2.2.4, 1 = O/O is a factorized subgroup of G/O and so by Lemma 1.2.2, O is

factorized.

(iv) Since Oππ′(G)/O is a π′-group, it is contained in BO/O = Bπ′O/O. Now if O is

abelian, then both O and Bπ′ centralize Bπ ≤ O and so Oππ′(G) centralizes Bπ: Therefore

Bπ ≤ Z
(
Oππ′(G)

)
≤ CG(O) = O. By the minimality of O, we have either Z

(
Oππ′(G)

)
=

1 or Z
(
Oππ′(G)

)
= CG(O). From the latter, it follows directly that O = Oππ′(G) = G,

contrary to our assumption that O < G. So we must have Z
(
Oππ′(G)

)
= 1 and hence

Bπ = 1. So by Lemma 1.1.1, A and B must be Hall subgroups of G. The remaining

statements follow from Lemma 2.2.5 and Lemma 1.1.8.
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We summarize the results of Lemma 3.2.4 for primitive groups that are the product

of two nilpotent subgroups A and B

3.2.5 Lemma. Let the finite soluble group G = AB be the product of its nilpotent

subgroups A and B. Suppose that G is primitive and denote with N the unique minimal

normal subgroup of G. Then

(i) N = F (G) = Op(G) is an elementary abelian p-group for some prime p and

Op′(G) = 1;

(ii) A or B is a Sylow p-subgroup of G containing N ; if A ,= B, then the other is a

Hall p′-subgroup. In particular, A ∩ B = 1.

(iii) If F2/N = F (G/N), then F2/N is a p′-group and every prime divisor of |B|
divides already |F2|.

(iv) If A and B are proper subgroups of G, then A and B are maximal nilpotent

subgroups of G.

(v) If A ,= B, then every subgroup of G possesses a factorized conjugate.

(vi) If A ,= B, then G = BC = CA for a subgroup C, then G = C.

Proof. First, we deal first with the case when G is nilpotent. Since then a maximal

subgroup of G is normal, a primitive nilpotent group is cyclic of prime order. So either

G = A = B or A = 1 and B = G or A = G and B = 1. In all three cases, it is easy to

see that the lemma holds. Therefore we may suppose from now on that A, B and N are

properly contained in G.

(i) follows directly from Lemma 3.2.3.

(ii), (v) and (vi) follow directly from Lemma 3.2.4 with π =
{
p
}
, since we have already

excluded the case when G = N .

(iii) If P/N is a Sylow p-subgroup of F2/N , then P is a normal p-subgroup of G

since F2/N is nilpotent. This shows that P = N and F2/N is a p′-group. So F2/N is

contained in the Hall p′-subgroup BN/N of G/N . Therefore Z(BN/N) ≤ Z(F2/N) ≤
CG/N(F2/N) ≤ F2/N . Since Z(BN/N) ∼= Z(B) is the direct product of the centres of

the primary components of BN/N , this shows that every prime divisor of B divides

F2/N .

(iv) Suppose that A is contained in a proper nilpotent subgroup H of G, then G = HB

and, applying the same arguments to G = HB, we obtain H∩B = 1. So by Lemma 1.1.1,

we must have |A| = |H| and thus A = H , similarly for B. Therefore A and B are maximal

nilpotent subgroups of G.

For further results about the structure of G, see also Lemma 4.2.1.
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3.3 Pronormal and abnormal subgroups

Recall that a subgroup P of the finite group G is called pronormal if P and P g are

conjugate in the subgroup 〈P, P g〉 for every g ∈ G. If P ≤ H ≤ G, then, of course, P is

also a pronormal subgroup of H .

Pronormal subgroups of finite soluble groups can also be characterized in the following

way:

3.3.1 Theorem (Mann [39]). A subgroup P of a finite soluble group G is pronormal

if and only if each Hall system of G reduces into exactly one conjugate of P .

A proof of this can also be found in [13], I.6.6.

3.3.2 Proposition. Let G be a finite soluble group which is the product of its nilpo-

tent subgroups A and B. If S is a prefactorized subgroup of G, then the Hall system

Σ =
{
AπBπ | π ⊆ ±"P

}

reduces into S. Moreover, Σ is the only Hall system of G that reduces into every prefac-

torized subgroup of G. In particular Σ is the only Hall system of G consisting entirely of

prefactorized Hall subgroups.

Proof. By Proposition 2.1.2, Σ is a Hall system of G. Since S is the product of its

nilpotent subgroups S ∩ A and S ∩ B, also the subgroup S possesses a Hall system of

the form {
Sπ = (S ∩ A)π(S ∩ B)π | π ⊆ ±"P

}

where (S ∩A)π and (S ∩B)π are the Hall π-subgroups of S ∩A and S ∩B respectively.

Since Aπ and Bπ are the unique Hall π-subgroups of A and B respectively, we must

have (S ∩ A)π ≤ Aπ and (S ∩ B)π ≤ Bπ. This shows that for every set π of primes, the

Hall π-subgroup Sπ = (S ∩A)π(S ∩ B)π of S is contained in the π-subgroup S ∩AπBπ,

and therefore that Sπ = S ∩ AπBπ. Since this is true for every set π of primes, we have

shown that Σ reduces into S.

Now suppose that Σ∗ is another Hall system of G reducing into every prefactorized

subgroup of G. If π is a set of primes, then Σ∗ reduces into the Hall subgroup AπBπ of G.

Therefore AπBπ must be contained in a Hall π-subgroup H ∈ Σ∗ and so AπBπ ∈ Σ∗.

Continuing like this for every set π of primes, we have Σ = Σ∗ as required.

The next proposition is a direct consequence of Proposition 3.3.2 and Theorem 3.3.1.

3.3.3 Proposition. Let the finite group G be the product of its nilpotent subgroups A

and B. If P is a pronormal subgroup of G, then P has a unique prefactorized conjugate.
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Proof. If P g and P h are prefactorized conjugates of P for g, h ∈ G, then by Propo-

sition 3.3.2, the Hall system

Σ =
{
(AπBπ | π ⊆ ±"P

}

reduces into both P g and P h. Since P is pronormal, we must have P g = P h by Theo-

rem 3.3.1.

A subgroup S of G is called abnormal if g ∈ 〈S, Sg〉 for every g ∈ G. Of course, every

abnormal subgroup of G is pronormal in G. Also, if S ≤ H ≤ G, then, S is abnormal

in H . The following lemma shows in particular that an abnormal subgroup cannot be

contained in a proper normal subgroup of G.

Remark. By induction on the number of factors, it can be proved that Proposi-

tion 3.3.2 and Proposition 3.3.3 even holds for groups G that are the product of finitely

many finite nilpotent subgroups.

3.3.4 Lemma. Let S be an abnormal subgroup of the (possibly infinite) group G. If

S ≤ K ! H ≤ G, then H = K. Thus S = NG(S).

Proof. For all h ∈ H , we have Sh ≤ Kh = K and therefore h ∈ 〈S, Sh〉 ≤ K. So we

have H = K. The second statement follows from the fact that S ! NG(S).

3.3.5 Proposition. Let G = AB be the product of the finite nilpotent subgroups A

and B. Then every abnormal subgroup of G possesses exactly one factorized conjugate.

Proof. Let S be an abnormal subgroup of G. If S = G, then there is nothing to

prove, so suppose that S < G and let M be a maximal subgroup of G which contains

S. By Lemma 3.3.4, M cannot be normal in G and therefore MG < M < G and G/MG

cannot be nilpotent. Hence we may apply Lemma 3.2.5 to show that M/MG possesses

a factorized conjugate, say, Mg/MG. So by Lemma 1.2.2, also Mg is factorized in G.

Now Sg is clearly an abnormal subgroup of Mg and by induction on the order of G,

the subgroup Sg possesses a factorized conjugate in Mg which is also factorized in G

by Lemma 1.1.6 and is clearly conjugate in G to S as required. The uniqueness of this

conjugate follows from Proposition 3.3.3.

Since every maximal nonnormal subgroup of a group G is abnormal, we also have

3.3.6 Corollary. Suppose that the group G is the product of its finite nilpotent sub-

groups A and B. Then every maximal nonnormal subgroup of G has a unique factorized

conjugate.
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The following results shows that in general, one cannot expect every conjugate of a

subgroup to be prefactorized or factorized.

3.3.7 Corollary. If the finite group G is the product of its subgroups A and B and

every maximal subgroup of G is prefactorized, then G is nilpotent.

Proof. Let M be a maximal subgroup of G. Since M is a pronormal subgroup of G,

M has a unique prefactorized conjugate by Proposition 3.3.3. Since on the other hand,

every conjugate of G is a maximal subgroup, hence prefactorized, it follows that M ! G.

So every maximal subgroup of G is normal and G must be nilpotent.

This result can be used to characterize those products of two finite nilpotent subgroups

in which every subgroup is factorized or prefactorized.

3.3.8 Proposition. Let G be a finite soluble group which is the product of its nilpo-

tent subgroups A and B. Then the following statements are equivalent:

(i) Every subgroup of the nilpotent group G has a factorized (prefactorized) conjugate.

(ii) G is nilpotent; its subgroups A and B have coprime orders (coprime indices).

(iii) Every subgroup of G is factorized (prefactorized).

Proof. (i) ⇒ (ii): This follows immediately from Proposition 2.3.1 and Corollary 2.3.3

respectively.

(ii) ⇒ (iii). Obviously, every subgroup of G is subnormal, hence this follows from

Lemma 2.2.2 and Corollary 2.2.4 respectively.

(iii) ⇒ (i): We have to show that G is nilpotent. But this follows at once from Corol-

lary 3.3.7

The next lemma shows that abnormal subgroups can be characterized as the normal-

izers of the pronormal subgroups:

3.3.9 Lemma. Let G be a (possibly infinite) group. Then the normalizer of a pronor-

mal subgroup of G is abnormal in G. Therefore a subgroup of G is abnormal if and only

if it is pronormal and self-normalized.

Proof. Suppose that P is a pronormal subgroup of G and let g ∈ G. We have to

show that g ∈ H = 〈NG(P ), NG(P )g〉. Since 〈P, P g〉 ≤ H , there is an h ∈ H such that

P h = P g. Hence gh−1 ∈ NG(P ) and consequently g ∈ 〈NG(P ), H〉 = H , proving that

NG(P ) is abnormal.

From this, it follows that a self-normalized pronormal subgroup is abnormal. On the

other hand, we have already proved in Lemma 3.3.4 that abnormal subgroups are self-

normalized.
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A factorized (abnormal) subgroup clearly contains A ∩ B, hence we obtain

3.3.10 Corollary. Let the group G be the product of its nilpotent subgroups A and B.

If P is any pronormal subgroup of G, then it is normalized by some conjugate of A∩B.

Suppose that the group G is the product of its nilpotent subgroups A and B and

that P is a prefactorized pronormal subgroup of G. Then NG(P ) is abnormal in G, and

therefore we know that some conjugate of NG(P ) is factorized. The next proposition

shows that NG(P ) itself is factorized (and therefore no other conjugate of NG(P ) can be

factorized). This means that the investigation whether a pronormal subgroup P of G has

a prefactorized (factorized) conjugate may be reduced to finding the factorized conjugate

NG(P )g of its normalizer and to checking whether the conjugate P g of P that lies in

NG(P )g = NG(P g) is a prefactorized (factorized) normal subgroup of NG(P )g.

3.3.11 Proposition. Let the group G be the product of its subgroups A and B and

let P be a pronormal subgroup of G. Then the following statements are equivalent:

(i) P is prefactorized;

(ii) NG(P ) is factorized and P is a prefactorized (normal) subgroup of NG(P ).

Proof. Suppose that P is a prefactorized pronormal subgroup of G. Since NG(P ) is

abnormal in G, by Proposition 3.3.5, there is a g ∈ G such that NG(P )g = NG(P g)

is factorized. Now by Proposition 3.3.2, the Hall system Σ defined there reduces into

NG(P g) and since P g ! NG(P g), Σ reduces into P g as well.

On the other hand, Σ also reduces into P by Proposition 3.3.2 since P is prefactorized,

and so we must have P g = P by Proposition 3.3.3, showing that the normalizer NG(P ) =

NG(P g) of P is factorized.

The other implication follows directly from Lemma 1.1.6.

3.3.12 Corollary. Let the group G be the product of its subgroups A and B. If P

is a pronormal subgroup of G such that NG(P ) is factorized, then the factorizer XG(P )

of P can be written XG(P ) = NA(P )P ∩NB(P )P and it possesses a triple factorization

XG(P ) = A∗P = B∗P = A∗B∗

where P ! X, A∗ = NA(P ) ∩ NB(P )P ≤ A and B∗ = NA(P )P ∩ NB(P ) ≤ B.

Proof. NG(P ) is factorized, so we have XG(P ) ≤ NG(P ) which shows that XG(P ) is

also the factorizer of P in NG(P ) = NA(P )NB(P ). Since P ! NG(P ), the corollary now

follows directly from Lemma 1.2.1.

It also follows from Proposition 3.3.11 that the system normalizer of the Hall system

Σ is factorized:
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3.3.13 Corollary. Suppose that the group G is the product of its finite nilpotent

subgroups and let Σ be the Hall system defined in Proposition 3.3.2. Then NG(H) is

factorized for all H ∈ Σ and also the system normalizer

NG(Σ) =
⋂

H∈Σ

NG(H)

of Σ is factorized.

Proof. Since every Hall subgroup H ∈ Σ is prefactorized, it follows from Proposi-

tion 3.3.11 that NG(H) is factorized for all H ∈ Σ. The system normalizer NG(Σ) of Σ is

factorized since by Lemma 1.1.6, the intersection of any number of factorized subgroups

is factorized.

Question. Recall that the hypercentre of a finite soluble group equals the inter-

section of its system normalizers. Is the hypercentre of a finite group G that is the

product of two nilpotent subgroups prefactorized? (This question is motivated by the

fact that a corresponding result holds for F -injectors: if an F -injector of a group G

that is the product of two nilpotent subgroups is factorized (prefactorized), then also

its core, the F -radical of G, is factorized (prefactorized); see Proposition 3.6.4 for de-

tails.)

On the other hand, by an example of Heineken [28], the hypercentre does not neces-

sarily contain A∩B and hence it is not factorized. Also, an example of Gillam [19] of a

finite p-group G which is the product of two subgroups A and B which do not contain

normal subgroups of G shows that it is possible to have A∩Z(G) = 1 and B∩Z(G) = 1

whence the centre Z(G) of G is not necessarily prefactorized.

3.4 Projectors

Let X be a class of groups. An X-subgroup X of a group G is X-maximal in G if for every

X-subgroup Y of G with X ≤ Y , it follows that X = Y . A subgroup P of G is called an

X-projector if PN/N is an X-maximal subgroup of G/N for every normal subgroup N

of G.

Recall from Section 1.3 that a class H of finite groups is called a Schunck class if G ∈ H

whenever all primitive homomorphic images of G lie in H. The Schunck classes of finite

soluble groups are precisely the classes for which every finite soluble group G possesses

an H-projector. In this case, the H-projectors of G are conjugate; see e.g. [13], III.3.10,

3.21, and by [13], III.3.22, if P is an H-projector of G and P ≤ H ≤ G, then P is an

H-projector of H as well. This also shows that H-projectors are pronormal.
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In view of Proposition 3.3.11, we examine first the case when a projector is normal

in G; cf. Blessenhohl and Gaschütz [10].

3.4.1 Lemma. Let G be a finite soluble group and suppose that H is a Schunck

class such that an H-projector P is normal in G. Then P = Oπ′
(G) where π is the

characteristic of H.

Proof. Suppose first that a prime p ∈ π divides the order of G/P . Then G/P has a

subgroup of order p which belongs to H and so 1 = P/P is not H-maximal in G/P , contra-

dicting the fact that P is an H-projector. Therefore G/P is a π′-group and Oπ′
(G) ≤ P .

Now suppose that Oπ′
(G) < P and let M be a maximal normal subgroup of P

containing Oπ(G). Then P/M is a π′-group and since G (and hence P ) is soluble, P/M

is cyclic of prime order p ∈ π′. But P/M ∈ QH = H whose characteristic is π, hence does

not contain cyclic p-groups. This contradiction shows that P = Oπ′
(G).

We will also make use of the following property of saturated formations.

3.4.2 Proposition. If F is a saturated formation of characteristic π, then every

group G ∈ F is a π-group.

Proof. See e.g. Doerk and Hawkes [13], IV.4.3.

This result is false for arbitrary Schunck classes, e.g. for the classes of finite π-perfect

(soluble) groups, i.e. the class of finite (soluble) groups G for which Oπ(G) = G, if

∅ # π # ±"P.

For saturated formations, the next result has been proved by Heineken [28]:

3.4.3 Theorem. Let H be a Schunck class and suppose that the group G is the

product of its finite nilpotent subgroups A and B.

(i) If char(H) contains σ(A) ∩ σ(B), then G has a unique factorized H-projector.

(ii) If H is a saturated formation, then G has a unique prefactorized H-projector.

Proof. Note first that in both cases, the uniqueness of the factorized or prefactorized

projector follows from Proposition 3.3.3 since an H-projector is pronormal. Therefore it

remains to prove the existence of such projectors in G.

Let P be an H-projector of G. Since NG(P ) is an abnormal subgroup of G, by Propo-

sition 3.3.5, it has a factorized conjugate NG(P )g = NG(P g) where g ∈ G. Therefore by

Proposition 3.3.11, it is enough to show that P g is a prefactorized subgroup of NG(P g),

hence we may assume that G = NG(P g) and P ! G. Then we have P = Oπ′
(G) by the

preceding Lemma 3.4.1, where π = char(H).



3.4 Projectors 41

Now under the hypothesis of (i), the groups AP/P and BP/P have coprime orders

since π contains all common prime divisors of A and B. Therefore by Corollary 2.2.4,

1 = P/P is a factorized subgroup of G/P and so by Lemma 1.2.2, P is factorized in G.

In the case of (ii), P is a π-group by Proposition 3.4.2 since H is a saturated formation.

On the other hand, since G/P is a π′-group, P is the unique Hall π-subgroup of G, which

must be prefactorized by Lemma 2.1.1.

Let the group G be the product two nilpotent subgroups A and B. The following

example shows that none of the following subgroups of G is necessarily prefactorized: G′,

GN, [A, B], Oπ(G) for all sets π ,= ∅ of primes. (Observe that since all these subgroups

are normal, there cannot exist prefactorized conjugates, and, except possibly for [A, B],

no automorphism of G can map these subgroups to a prefactorized subgroup).

Since for every finite group G, the subgroup Oπ(G) is the unique H-projector of G

where H is the Schunck class of π-perfect groups, the example also shows that statement

(ii) of Theorem 3.4.3 becomes false when H is a Schunck class that is not a saturated

formation.

Observe also that the subgroups A and B are abelian in the following

3.4.4 Example. Let p and q be distinct primes and let N be a q-dimensional vector

space over F = GF (p), written additively. Define an automorphism α of N of order q

by

α: (x1, . . . , xq) 0→ (xq, x1, . . . , xq−1).

Now let G be the semidirect product of N by Q = 〈α〉, then G is (isomorphic with) the

standard wreath product of a group of order p with a group of order q.

Let D be the diagonal subgroup

D =
{
(x, . . . , x) | x ∈ F

}

of N . Clearly, α centralizes D (in fact, D = Z(G)) and so A = D × Q is an abelian

subgroup of G. Next, let

B =
{
(x1, . . . , xq−1, 0) | xi ∈ F

}
,

then B is a q − 1-dimensional F -subspace of N . Since D has F -dimension 1 and clearly

B and D intersect trivially, we have N = DB and thus G = QDB = AB, and since

B ≤ N , we have A ∩ B = QD ∩ N ∩ B = D(Q ∩ N) ∩ B = D ∩ B = 1.

By [13], A.18.4, the derived subgroup G′ of G equals

M =
{
(x1, . . . , xq) | xi ∈ F,

q∑

i=1

xi = 0
}



3.5 H-maximal subgroups 42

and Op(G) = QG = MQ. Since obviously N = Op(G), we also have that GN =

Op(G) ∩ Oq(G) = MQ ∩ N = M(Q ∩ N) = M = G′ and [A, B] = [Q, B] = M be-

cause [A, B] ≤ G′ = N and [Q, B] ≤ [A, B] contains the elements of the form

(. . . ,−1, 1, . . .)

which generate M .

Since clearly A∩M ≤ N , we have A∩M = A∩N∩M = QD∩N∩M = D(Q∩N)∩M =

D ∩ M ; thus

A ∩ M =
{
(x, . . . , x) | x ∈ F, q · x = 0

}
.

Since q ,= p, we have x = 0 whenever q · x = 0; thus A ∩ M = 1. Furthermore, B ∩ N

equals the set

{
(x1, . . . , xq−1, 0) | xi ∈ F,

q−1∑

i=1

xi = 0
}

which has dimension q − 2 while the dimension of N itself is q − 1. This shows that

(M ∩ A)(M ∩ B) = M ∩ B < M and so M , the derived subgroup of G as well as its

nilpotent residual, is not prefactorized.

Also, if Op(G) = MQ were prefactorized, then also its Sylow p-subgroup M would

have to be prefactorized by Lemma 2.1.1. So MQ cannot be prefactorized either.

3.5 H-maximal subgroups

The results about H-projectors obtained in Section 3.4 can also be obtained via a more

general result about H-maximal subgroups. The following result will also be used in

Section 3.6 to prove certain results for saturated Fitting formations.

3.5.1 Theorem. let H be a Schunck class and suppose that the group G is the product

of its nilpotent subgroups A and B. If H is an H-maximal subgroup of G, then:

(i) If char(H) contains σ(A) ∩ σ(B), then H possesses a factorized conjugate in G.

(ii) Without any hypothesis on the characteristic of H, if H is a saturated formation,

then H has a prefactorized conjugate in G.

Proof. (i) If 1 ,= N denotes a proper normal subgroup of G, then the H-group HN/N

is contained in an H-maximal subgroup Y/N of G/N . By induction on the order of G,

there is a g ∈ G such that Y g/N , and therefore Y g, is factorized. Then Hg ≤ Y g is also

an H-maximal subgroup of Y g, so if Y g < G, by induction on |G| again, Hg possesses

a factorized conjugate in Y g which is also a factorized subgroup of G by Lemma 1.1.6.

Therefore we may suppose that for all normal subgroups N ,= 1, the factor group G/N is
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an H-subgroup. Of course, we may also exclude the case when G ∈ H since then H = G

is factorized. But then by Lemma 1.3.1, G must be primitive.

Next, consider the case when A = B (= G): since G is primitive and nilpotent, G

is cyclic of prime order p, say, and p is a common prime divisor of A and B, hence H

contains G, a case that has already been treated.

So we are left with the case when A ,= B. Then, however, H possesses a factorized

conjugate in G by Lemma 3.2.5 and the proof of (i) is complete.

(ii) Let π = char(H). Since H is a saturated formation, H is a π-group by Proposi-

tion 3.4.2, and, replacing H by a suitable conjugate if necessary, we may suppose that H

is contained in the Hall subgroup AπBπ of G. Now σ(Aπ)∩σ(Bπ) ≤ π = char(H) whence

H , being also an H-maximal subgroup of AπBπ, is a factorized subgroup of AπBπ by

part (i). Thus it is a prefactorized subgroup of G by Lemma 1.1.6.

Observe also that, H-projectors being in particular H-maximal subgroups, Exam-

ple 3.4.4 shows that Theorem 3.5.1, (ii) cannot be extended to arbitrary Schunck classes.

Remark. The result of Theorem 3.4.3 can also be obtained combining Theorem 3.5.1

(existence) and Proposition 3.3.3 (uniqueness).

Note also that there may well be more than one factorized H-maximal subgroup and

that these need not even be isomorphic: consider the symmetric group of degree 3 which

is the product of a cyclic group A of order 2 and a cyclic group B of order 3. Let

H = N, then A and B are maximal nilpotent subgroups of G which are factorized but

not isomorphic.

As a corollary to Theorem 3.5.1, we obtain the following result which has been proved

by Fransman [17] and Amberg and Fransman [5] for Schunck classes containing all

finite nilpotent groups. The latter result in turn generalizes a result of Peterson [42] for

saturated formations.

3.5.2 Corollary. Suppose that G is a finite group with subgroups A, B and C where

A and B are nilpotent and C ∈ H. If G = AB = AC = BC, then G ∈ H, provided that

σ(A) ∩ σ(B) ⊆ char(H).

Proof. Let D be an H-maximal subgroup of G containing C. Then also AD = BD =

G. Now by Theorem 3.5.1, Dg is factorized for some g ∈ G and by Lemma 1.1.8,

G = D ∈ H.

This result becomes false as soon as we drop the condition σ(A) ∩ σ(B) ⊆ char(H):

let G = A = B be a cyclic group of order p for some prime p and suppose that H is a

class of groups (not necessarily a Schunck class) whose characteristic does not contain p.



3.6 Injectors and radicals 44

Then G /∈ H and therefore the unit subgroup is the only H-subgroup of G, and of course

G = A · 1 = B · 1 = AB.

3.6 Injectors and radicals

A Fitting set F is a set of subgroups of the group G which satisfies

(FS1) If M ∈ F , then Mg ∈ F for all g ∈ G,

(FS2) If M , N ∈ F and M and N normalize each other, then MN ∈ F .

(FS3) If G ∈ F and N ! G, then N ∈ F .

Let F be a Fitting class, i.e. an 〈Sn,N0〉-closed class of finite groups, then it is easy to see

that the set
{
S ≤ G | S ∈ F

}
is a Fitting set of the group G. Moreover, if F is a Fitting

set of G and H ≤ G, then the set FH =
{
S ≤ H | S ∈ F

}
is a Fitting set of S.

Let F be a set of subgroups of the group G that satisfies (FS1) and (FS2). In analogy

to the F-radical defined in Section 1.3, the F-radical of G is the subgroup of G generated

by all subnormal F -subgroups of G. To simplify notation, if H ≤ G, we will denote the

FH-radical of H again with HF .

3.6.1 Lemma. Let F be a set of subgroups of the finite group G satisfying (FS1)

and (FS2) above. Then:

(i) Every subnormal F-subgroup of G is contained in a normal F-subgroup of G.

(ii) GF is the unique maximal normal F-subgroup of G.

(iii) If S "" G, then SF ≤ S ∩ GF , and if F is a Fitting set and S "" G, then

SF = S ∩ GF .

Proof. (i) If S ! G, (i) is trivially true. Therefore by induction on the subnormal

defect of S, the subgroup S is contained in a normal F -subgroup R of SG ! G. Since

all G-conjugates of R are normal F -subgroups of SG by (FS1) and their product RG is

an F -subgroup by (FS2), RG is a G-invariant F -subgroup containing S as required.

(ii) By (i), GF is generated by all normal F -subgroups of G and so it is an F -subgroup

by (FS2).

(iii) SF is a subnormal F -subgroup of G by (ii), therefore SF ≤ S ∩ GF . If F is a

Fitting set, by (FS3), S ∩ GF is a subnormal subgroup of GF and so S ∩ GF ∈ F .

Therefore S ∩ GF is a normal F -subgroup of S and as such contained in SF .

An F-injector I is a subgroup I of G such that I ∩ S is F -maximal in S for all

subnormal subgroups S of G.

By mere definition, it is clear that for every subnormal subgroup S of G, the subgroup

I ∩ S is an FS-injector of S.
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The following proposition was originally proved for Fitting classes by Fischer, Ga-

schütz and Hartley [15]. For a proof, see e.g. Doerk and Hawkes [13], VIII.2.9 and 2.13.

3.6.2 Proposition. Let F be a Fitting set of the finite soluble group G. Then G

possesses exactly one conjugacy class of F-injectors. If I is an F-injector of G and

I ≤ H ≤ G, then I is also an FH-injector of H. In particular, the F-injectors of G are

pronormal subgroups of G.

The next lemma shows that if F -injectors exist and form a single conjugacy class,

then their core equals the F -radical.

3.6.3 Lemma. Let G be a finite soluble group. Then the F-radical GF of G equals

the intersection of all F-injectors of G.

Proof. Clearly, the intersection of all F -injectors of G is a normal F -subgroup of G,

hence it is contained in GF . On the other hand, if I is an F -injector, I ∩ GF is an

F -injector of GF , therefore I ∩ GF = GF . This shows that GF is contained in every

F -injector of G.

Next, we show that the F -radical of a finite group G which is the product of two

nilpotent subgroups is always prefactorized (factorized) if an injector of G is prefactorized

(factorized).

3.6.4 Proposition. Let G be the product of its finite nilpotent subgroups A and B

and let F be a Fitting set of G such that G possess a prefactorized (factorized) F-injector

I. Then the F-radical GF of G is prefactorized (factorized).

Proof. We prove the proposition by induction on the order of G. Observe that the

case G = 1 is trivial.

Let X = AGF ∩ BGF be the factorizer of GF in G. X is a factorized subnormal

subgroup of G by Corollary 3.1.6, therefore I ∩ X is a prefactorized (factorized) F -

injector of X by Lemma 3.6.1. Now GF = X ∩GF = XF which shows that the F -radical

of G coincides with that of X. So if X < G, by induction hypothesis, we must have

XF = GF which is prefactorized (factorized).

In the other case, we have G = X = AGF = BGF and hence G/GF is nilpotent. This

shows that I/GF "" G/GF is subnormal in G/GF . Thus I is a subnormal F -subgroup

of G and therefore I is contained in GF . So GF = I is prefactorized (factorized).

If, with the notation of the preceding Proposition 3.6.4, the F -injector I is contained in

a factorized subgroup H of G, then I is also an FH-injector of H by Proposition 3.6.2.

This shows that HF is prefactorized (factorized) for all such subgroups H . If, on the



3.6 Injectors and radicals 46

other hand, HF is prefactorized (factorized) for all factorized subgroups containing an

F -injector of G, the following proposition shows that G has a unique factorized F -

injector.

3.6.5 Proposition. Let G be the product of its finite nilpotent subgroups A and B

and let F be a Fitting set of G. Let I denote an F-injector of G and define

S =
{
S ≤ G | S ≤ G is factorized and contains a conjugate of I

}
.

Then the following statements are equivalent:

(i) Every S ∈ S contains a prefactorized (factorized) F-injector.

(ii) For every S ∈ S, the F-radical SF is prefactorized (factorized).

Proof. By Proposition 3.6.4, we have already seen that whenever S possesses a prefac-

torized (factorized) F -injector, then the corresponding radical SF must be prefactorized

(prefactorized). This proves the necessity of our condition.

Conversely, suppose that the proposition is true for all groups of order smaller than

|G| (observe that the statement is trivial if G = 1) and let I be an F -injector of G. Since

I is pronormal by Proposition 3.6.2, by Proposition 3.3.11, we may assume w.l.o.g. that

NG(I) is factorized and thus that NG(I) ∈ S. Now if NG(I) < G, then by induction

hypothesis, I is prefactorized (factorized) in NG(I), hence also in G by Lemma 1.1.6. In

the other case, when NG(I) = G, we have I ! G and thus I = GF which is prefactorized

(factorized) by hypothesis.

For Fitting classes, we obtain the following result:

3.6.6 Corollary. Let V be an S-closed class of finite groups and let F be a Fitting

class. Then the following statements are equivalent:

(i) For every group G ∈ V, the F-radical GF is prefactorized (factorized).

(ii) Every group G ∈ V that is the product of two nilpotent subgroups has a unique

prefactorized (factorized) F-injector

Proof. Suppose that the group G ∈ V is the product of its nilpotent subgroups A

and B. Let F =
{
S ≤ G | S ∈ F

}
, then F is a Fitting set of G, and since also all

subgroups of G belong to V, the equivalence of (i) and (ii) follows directly from the

equivalence of the corresponding statements of Proposition 3.6.5.

Since we know from Theorem 3.1.5 that the Fitting subgroup (and thus Fn(G) for all

n ≥ 1) is factorized, we obtain the following result about nilpotent injectors:

3.6.7 Corollary. Let the group G be the product of its finite nilpotent subgroups A

and B. Then G has a factorized Nk-radical and a unique factorized Nk-injector where
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Nk is the Fitting class of groups of nilpotent length ≤ k; in particular G has a unique

factorized N-injector.

Proof. By Theorem 3.1.5, F (G), and hence Fk(G) for every nonnegative integer k, is

factorized for every finite group G that is the product of two nilpotent subgroups. Now

Fk is the Nk-radical of G, and so by the preceding proposition (with V the class of all

finite groups, say), G has a unique factorized Nk-injector.

The following example1 shows that even when F is a Fitting class and the finite soluble

group G is the product of two cyclic groups A and B, its F-radical is not necessarily

prefactorized and G need not have prefactorized F-injectors. Observe also that in the

following example, every subgroup of A permutes with every subgroup of B.2 The second

part of the example shows that for Fitting sets F , a (normally embedded) F -injector

is not necessarily prefactorized (factorized), even when the F -radical is prefactorized

(factorized).

3.6.8 Example. Let G be a finite soluble group and

1 = G0 ≤ G1 ≤ · · · ≤ Gn = G

be a principal series of G. Every p-chief factor Gi/Gi−1 can be regarded as a vector space

over GF (p), the field with p elements, on which every g ∈ G acts as a nonsingular linear

transformation λi(g). Let

∆(g) =
∏

det
(
λi(g)

)

where the product is taken over all i such that Gi/Gi−1 is a p-group. ∆ is a homomor-

phism from G to the multiplicative group of GF (p). (Note that this homomorphism does

not depend on the choice of the principal series of G by the Jordan-Hölder theorem).

Then D(p), the class of finite soluble groups G such that ∆(g) = 1 for all g ∈ G, is

a normal Fitting class, i.e. a Fitting class such that every finite soluble group has a

(unique) normal D(p)-injector, as has been shown by Blessenhohl and Gaschütz, [10];

see also Hawkes [27] or Doerk and Hawkes [13], IX.2.14 (b).

Let S and S∗ denote the symmetric groups on the sets
{
1, 2, 3

}
and

{
1∗, 2∗, 3∗

}
. Put

G = S × S∗, then the D(3)-injector of G is the normal subgroup

D = 〈(123), (1∗2∗3∗), (12)(1∗2∗)〉

1 I wish to thank K. Doerk for pointing out the relevance of the following example in the context of
products of nilpotent groups.

2 Maier [37] calls such subgroups A and B totally permutable; this is, of course, a property much
stronger than just the permutability of A and B.
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which has index 2 in G.

Now let A = 〈(123), (1∗2∗)〉 and B = 〈(1∗2∗3∗), (12)〉. It is easy to see that A and B

are cyclic groups of order 6 and that A ∩ B = 1.

Therefore |AB| = 36 = |G| and so G = AB. Finally, A∩D and B ∩D are both cyclic

of order 3 and so D cannot be factorized (or prefactorized, which is the same in this

case).

For the second example, let P = 〈(12)(1∗2∗)〉 be a Sylow 2-subgroup of D and let

F =
{
1, P g | g ∈ G

}
. Then it follows from the fact that P is normally embedded in G

or simply by direct calculation that F is a Fitting set of G with injector P and radical

GF = 1. Thus GF = 1 is a factorized subgroup of G.

On the other hand, since NG(P ) = 〈(12), (1∗2∗)〉 is factorized, by Proposition 3.3.11,

if G had a factorized F -injector, then it would have to be contained in NG(P ). So P

would have to be prefactorized, which is evidently not the case.

Question. Is there an example of a Fitting class F and a finite group G which is the

product of two nilpotent subgroups such that G does not have a prefactorized (factorized)

F-injectors but nevertheless GF is prefactorized (factorized)?

To obtain a further result in the case when F is a saturated Fitting formation, we

have to employ the results of Section 3.5. Then we obtain the following proposition,

whose first statement has been proved by Amberg and Fransman [5] in the case when

H contains all finite nilpotent groups.

3.6.9 Proposition. Let the finite group G be the product of its nilpotent subgroups A

and B and let H = N0H be a Schunck class whose characteristic contains σ(A) ∩ σ(B)

(an N0-closed saturated formation). Then

(i) GH is factorized (prefactorized).

(ii) If G admits H-injectors, then every H-injector has a factorized (prefactorized)

conjugate.

Proof. (i) Suppose first that H is a Schunck class whose characteristic contains

σ(A) ∩ σ(B). Then the factorizer X of R = GH has a triple factorization

X = (A ∩ BR)R = (AR ∩ B)R = (AR ∩ B)(A ∩ BR)

by Lemma 1.2.1, and since (AR ∩ B) and (A ∩ BR) are nilpotent and R ∈ H, we have

X ∈ F by Corollary 3.5.2. On the other hand, by Corollary 3.1.6, X is subnormal in G,

hence X ≤ R and therefore R = X is factorized.

Next, let H be a saturated formation and put π = char(X). Let AπBπ be the prefactor-

ized Hall π-subgroup of G. Since H is a saturated formation, every H-group is a π-group,
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hence R = GH must be contained in the prefactorized subgroup AπBπ of G. Hence AπBπ

contains a prefactorizer X of R, and by Lemma 1.2.4, X = A∗R = B∗R = A∗B∗ for

suitable subgroups A∗ and B∗ of Aπ and Bπ respectively. Now we have σ(A∗)∩σ(B∗) ⊆
π = char(H), hence by Corollary 3.5.2, we have that X ∈ H. Since every prefactorizer

of G is subnormal in G by Corollary 3.1.6, it follows that X = R as in the first part.

(ii) The second part follows directly from Section 3.5 since H-injectors are in particular

H-maximal subgroups.

Remark. Proposition 3.6.9, (ii) becomes false if N0H = H is only a Schunck class but

not a saturated formation by Example 3.4.4, for the classes of π-perfect groups are also

N0-closed.

Note also that we do not claim that a (pre)factorized injector be unique in the pre-

ceding proposition. However, this is the case when F is a saturated Fitting formation,

i.e. a Fitting class that is also a saturated formation. Perhaps it is also worth noting

that saturated Fitting formations include S-closed Fitting classes, for these are saturated

formations by a theorem of Bryce and Cossey [7], [8]. An outline of their proof can also

be found in [13], Chapter XI.

3.6.10 Corollary. Let the finite group G be the product of its nilpotent subgroups A

and B and suppose that F is both a Fitting class and a Schunck class (a saturated Fitting

formation whose characteristic contains σ(A) ∩ σ(B)). Then:

(i) GF is prefactorized (factorized).

(ii) G has a unique prefactorized (factorized) F-injector.

Proof. It follows directly from Proposition 3.6.9 that GF is prefactorized (factorized).

Therefore the second statement follows from Corollary 3.6.6, taking V to be the class of

all finite soluble groups.



Chapter 4

Structural properties of a product
of two finite nilpotent groups

4.1 Fundamental results about the p-length

of a p-soluble group

A group G is said to be π-separable for a set π of primes if the series

1 ! Oπ′(G) ! Oπ′π(G) ! Oπ′ππ′(G) ! . . .

reaches G after a finite number of steps. Then the number of nontrivial π-factors in

that series of G is called the π-length of G. The group G is called π-soluble if the π-

factors in the above series are soluble. If π =
{
p
}
, the group G is also called p-separable

(p-soluble), and we also write lp(G) instead of l{p}(G).

Bounds on the p-length of a finite p-soluble group in terms of certain invariants of its

Sylow p-subgroups will play an important role in the sequel. If G is any finite p-soluble

group for the prime p and P is a Sylow p-subgroup of G, define the integers bp(G), cp(G),

dp(G) and ep(G) as follows: let pbp(G) be the order of P , cp(G) its nilpotency class, dp(G)

the derived length of P and pep(G) its exponent. lp(G) will denote the p-length of G.

The following observations are the basis for the bounds on the p-length of G that we

will cite below:

4.1.1 Theorem. Let G be a finite p-soluble group, where p is a prime. Then:

(i) (Hall and Higman [26]) If cp(G) > 0, then cp(G/Op′p(G) < cp(G).

(ii) (Hall and Higman [26]) If p ,= 2 and dp(G) > 0, then dp(G/Op′p(G) < dp(G).

(iii) (Berger and Gross [9]) If d2(G) > 0, then d2(G/O2′22′2(G) < d2(G). If the Sy-

low 2-subgroups or the Sylow 3-subgroups of G are abelian and d2(G) > 0, then

already d2(G/O2′2(G) < d2(G).

(iv) (Hall and Higman [26]) ep(G/Op′p(G) < ep(G), provided that ep(G) > 0 and G

satisfies one of the following conditions holds:

(a) p ,= 2 and p is not a Fermat prime;

(b) p is an odd Fermat prime and the Sylow 2-subgroups of G are abelian;
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(c) p = 2 and the Sylow q-subgroups of G are abelian for all Mersenne primes q.

The following bounds on the p-length lp(G) of a finite p-soluble group G in terms of

the structure of a Sylow p-subgroup are known. Unless otherwise noted, the bounds are

due to Hall and Higman [26].

4.1.2 Theorem. Let the finite group G be a p-soluble group. Then:

(i) bp(G) ≥






plp − 1

p − 1

if p is odd and not a Fermat

prime*;

(p − 2)lp+1 − lp(p − 3) − p + 2

(p − 3)2
if p is a Fermat prime > 3;

2lp−1 + lp − 1 if p = 3;
1
2 lp(lp + 1) in any case.

(ii) cp(G) ≥






plp−1 if p is odd and not a Fermat

prime*;

(p − 2)lp − 1

(p − 3)
if p is a Fermat prime > 3;

min
{
lp, 2

lp−1
}

if p = 3;

lp in any case.

(iii) dp(G) ≥






lp if p ≥ 3*;

lp
if p = 2 and d3(G) ≤ 1

(Berger and Gross [9]);

min
{
lp,

1
2 lp + 1

}
if p = 2 (Berger and Gross [9]).

(iv) ep(G) ≥






lp
if p is neither 2 nor a Fermat

prime*;
1
2 lp if p is an odd prime*;

min
{
lp,

1
2(lp + 1)

}
if p = 2 (Gross [21]).

Here [x] denotes the greatest integer ≤ the real number x.

In the same paper, Hall and Higman also show that the inequalities marked * are best

possible in the sense that for every integer n, there is a group G of order ≥ n such that

the bound is attained. In our context, it is of interest that the examples furnished by

Hall and Higman are groups whose order is divisible by only two primes, whence they

are the product of their Sylow subgroups and thus products of two nilpotent subgroups.

Observe that all functions of lp in the previous theorem are increasing when lp ≥ 0 so

that the inequalities indeed bound lp in terms of bp(G), cp(G), dp(G) and ep(G).
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4.2 Bounds on the π-lengths

of products of two finite nilpotent subgroups

We recall that the classes of π-separable groups of π-length ≤ k form saturated S-closed

Fitting formations for every nonnegative integer k.1 So we will frequently encounter

primitive groups as minimal counterexample. In view of Lemma 3.2.5, it is no surprise

that the case when G is the product of two nilpotent subgroups of coprime order is of

special importance.

4.2.1 Lemma. Let the finite group G be the product of its nilpotent subgroups A

and B. If (|A|, |B|) = 1 and Oπ′(G) = 1 where π is the set of prime divisors of |A|, then:

(i) Oπ′π = Oπ(G) = F (G).

(ii) Let F0 = 1 and Fk+1/Fk = F (G/Fk) for k > 0. Then

Fk+1/Fk =

{
Oπ(G/Fk) if k is even
Oπ′(G/Fk) if k is odd;

moreover every prime divisor of |AFk/Fk| divides |Fk+1/Fk| if k is even and every

prime divisor of |BFk/Fk| divides |Fk+1/Fk| if k is odd.

(iii) n(G) = lπ(G) + lπ′(G); moreover either n(G) = 2lp(G) = 2lp′(G) or n(G) =

2lp(G) − 1 = 2lp′(G) + 1.

Proof. (i) If p divides the order of F (G), then a Sylow p-subgroup of F (G) is a proper

normal subgroup of G. Since Oπ′(G) = 1, we must have p ∈ π and F (G) ≤ Oπ(G). On

the other hand, Oπ(G) is contained in the nilpotent Hall π-subgroup A of G and is

therefore nilpotent. It follows that F (G) = Oπ(G) = Oπ′π(G).

(ii) Clearly, Oπ(G) > 1 since G is soluble by the Kegel-Wielandt theorem (our Theo-

rem 3.1.1). Now G/Oπ(G) does not contain nontrivial normal π-subgroups and, exchang-

ing π and π′ (observe that the set π′ is the set of primes that do divide the order of B

plus the primes that do not divide the order of G, so that we may assume that π′ con-

tains exactly the prime divisors of B), we may suppose that the statement is true for

G/F (G). The first part of the statement follows since by part (i), Oπ(G) = F (G).

For the second statement, observe that F1 ≤ A and thus Z(A) ≤ CG(F1) which is

contained in F1. Now Z(A) is the product of the (nontrivial) centres of the primary

components of A, and so every prime divisor of |A| divides already the order of Z(A) ≤
F1. The general statement follows by considering G/Fk instead of G and exchanging A

and B if k is odd.

1 The proof is straightforward except possibly for saturation, a proof of which can be obtained easily
from the proof given by Robinson [43], 9.3.4 for π =

{
p
}
.



4.2 Bounds on the π-lengthsof products of two finite nilpotent subgroups 53

(iii) This follows immediately from (ii), since the Fitting series

1 = F0 " F1 " · · · " Fn = G

coincides with the upper π-series which equals the upper π′-series.

1 ! Oπ′(G) " Oπ′π(G) " Oπ′ππ′ " · · · " G.

We will soon see that (iii) remains true for some prime p also when we remove the

condition (|A|, |B|) = 1. This will be proved in Section 4.3. The dual of the previous

lemma is likewise true:

4.2.2 Lemma. Let the finite group G be the product of its nilpotent subgroups A

and B. If (|A|, |B|) = 1 and Oπ′
(G) = 1 where π is the set of prime divisors of |A|, then:

(i) Oπ′π = Oπ(G) = GN.

(ii) Set L0 = G and for k > 0, define Lk+1 = (Lk)
N. Then

Lk/Lk−1 =

{
Oπ(Lk) if k is odd
Oπ′

(Lk) if k is even
.

Proof. (i) Obviously, G = AOπ(G) so that G/Oπ(G) ∼= A/A ∩ Oπ(G) is nilpotent.

On the other hand, G/GN must be a π-group because Oπ′
(G) = 1 which proves the

other inclusion.

(ii) Note first that every normal subgroup of G is factorized by Corollary 2.2.4 so that

in particular Oπ(G) is factorized (this can be seen more easily in this case observing

that B ≤ Oπ(G)). Now Oπ
(
Oπ(G)

)
= Oπ(G) which shows that Oπ(G) satisfies the

hypotheses of this lemma for the set π′ (which we may assume to contain exactly the

prime divisors of B; cf. the remark in the proof of Lemma 4.2.1). The full statement

now follows by induction on k.

It is easy to see that one can construct from the inequalities stated in Theorem 4.1.2

functions f : N → ±"N0 which satisfy

(BP1) for all finite soluble groups G and all primes p, lp(G) ≤ f(Gp), where Gp is a

Sylow p-subgroup of G.

(BP2) f(P/N) ≤ f(P ) for all finite p-groups P and N ! P where p a prime.

4.2.3 Theorem. Let f be a function satisfying (BP1) and (BP2) above, and suppose

that the finite group G is the product of its nilpotent subgroups A and B. Then lπ(G) ≤
max

{
f(Ap), f(Bp) | p ∈ π

}
.
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Proof. Suppose that the theorem is false and let G be a counterexample of minimal

order. Let k = maxp∈π
{
f(Ap), f(Bp)

}
, and denote with X the class of nilpotent groups H

satisfying f(Hp) ≤ k for all p ∈ π. Then we have A, B ∈ X; moreover, using (BP2), it

is easy to see that the class X is Q-closed.

If H denotes the Schunck class of finite groups satisfying lπ(G) ≤ k, then a finite group

of minimal order that is a product of two X-subgroups but does not lie in H is primitive

by Lemma 1.3.3. So G must be primitive with unique minimal normal subgroup N of

exponent p and lπ(G) > lπ(G/N). This shows that p ∈ π. Since in view of (BP1), the

theorem is trivially true if G = A = B, we may also assume by Lemma 3.2.5 that A is

a Sylow p-subgroup of G and that B is a Hall p′-subgroup.

Since Oππ′/Oπ(G) is a π′-group and Bπ′ is a Hall π′-subgroup of G, we have

Oππ′/Oπ(G) ≤ Bπ′Oπ(G)/Oπ(G).

Now Bπ′ is centralized by Bπ because B is nilpotent, and since moreover

CG

(
Oππ′(G)/Oπ(G)

)
≤ Oππ′(G)/Oπ(G)

(see e.g. [26], Lemma 1.2.3) we must have Bπ ≤ CG

(
Oππ′(G)/Oπ(G)

)
≤ Oππ′(G)/Oπ(G);

consequently Bπ ≤ Oπ(G). This shows that AOπ(G)/Oπ(G) is a p-group with p ∈ π and

BOπ(G)/Oπ(G) is a π′-group. In particular, the order of G/Oπ(G) is divisible only by p

and primes in π′, hence every p-series is also a π-series and viceversa, and in particular,

lp
(
G/Oπ(G)

)
= lπ

(
G/Oπ(G)

)
. Since moreover Op′p(G) = N ≤ Oπ(G), it follows that

lπ(G) ≤ 1 + lp
(
G/Oπ(G)

)
≤ lp(G) ≤ f(Ap) ≤ k

by (BP1). This final contradiction proves the theorem.

The following bounds on lp follow directly from Theorem 4.1.2 and Theorem 4.2.3

with π = p:

4.2.4 Corollary. Let the finite group G be the product of its nilpotent subgroups A

and B. Write lp for lp(G) and let bp = max
{
bp(A), bp(B)

}
, cp = max

{
cp(A), cp(B)

}
,

dp = max
{
dp(A), dp(B)

}
and ep = max

{
ep(A), ep(B)

}
, then:

(i) bp ≥






plp − 1

p − 1

if p is odd and not a Fermat

prime*;

(p − 2)lp+1 − lp(p − 3) − p + 2

(p − 3)2
if p is a Fermat prime > 3;

2lp−1 + lp − 1 if p = 3;
1
2 lp(lp + 1) in any case.



4.2 Bounds on the π-lengthsof products of two finite nilpotent subgroups 55

(ii) cp ≥






plp−1 if p is odd and not a Fermat prime*;

(p − 2)lp − 1

(p − 3)
if p is a Fermat prime > 3;

min
{
lp, 2

lp−1
}

if p = 3;

lp in any case.

(iii) dp ≥






lp if p ≥ 3*;

lp if p = 2 and d3(G) ≤ 1;

min
{
lp,

1
2 lp + 1

}
if p = 2.

(iv) ep ≥






lp if p is neither 2 nor a Fermat prime*;
1
2 lp if p is an odd prime*;

min
{
lp,

1
2(lp + 1)

}
if p = 2.

Observe that by our remark after Theorem 4.1.2, the inequalities marked * are again

best-possible.

It is clear that the bounds for p = 2 above are very bad compared with the results

obtained for other primes. However, using the fact that lp(G) ≤ lp′(G)+1, we can obtain

better results if we use information about the Hall p′-subgroups of A and B.

In order to obtain handy bounds on π-length, we have to simplify the formulas given

in Theorem 4.1.2

4.2.5 Lemma. Let the group G be a finite p-soluble group of p-length lp, where p is

an odd prime. Then

(i) bp(G) ≥ 2lp−1 + lp − 1;

(ii) cp(G) ≥ min
{
lp, 2

lp−1
}
;

(iii) dp(G) ≥ lp;

(iv) ep(G) ≥ 1
2 lp.

Proof. (i) If p is odd and not a Fermat prime, then by Theorem 4.1.2 we have

bp(G) ≥ plp − 1

p − 1
=

lp−1∑

i=0

pi ≥ 2lp−1 + (lp − 1) · 1,

whereas if p is a Fermat prime > 3, we have

(p − 2)lp+1 − lp(p − 3) − p + 2

(p − 3)2
=

1

p − 3

( lp∑

i=0

(p − 2)i − (lp − 1)
)

≥ 1

p − 3

(
(p − 2)lp + (p − 2) · (lp − 1) + 1 − (lp − 1)

)

≥ (p − 3)lp−1 + lp − 1 ≥ 2lp−1 + lp − 1.
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The case p = 3 being obvious, it follows that the first formula holds for all odd primes.

The other statements should be clear.

Define bπ(G) = max
{
0, bp(G) | p ∈ π

}
and similarly cπ(G), dπ(G), eπ(G) (note that

if G is nilpotent, then cπ(G) and dπ(G) are the class and derived length of a Hall π-

subgroup of G), then we obtain the following bounds on the π-length of a group G which

is the product of two finite nilpotent subgroups.

4.2.6 Corollary. Let the finite group G of π-length lπ be the product of its nilpotent

subgroups A and B, let π be a set of primes, and define bπ = max
{
bπ(A), bπ(B)

}
,

cπ = max
{
cπ(A), cπ(B)

}
, dπ = max

{
dπ(A), dπ(B)

}
and eπ = max

{
eπ(A), eπ(B)

}
. Then

the following inequalities hold:

(i) bπ≥ 2lπ−1 + lπ − 1 if 2 /∈ π and bπ′≥ 2lπ−2 + lπ − 2 if 2 ∈ π;
(ii) cπ≥ min

{
lp, 2

lπ−1
}

if 2 /∈ π and cπ′≥ min
{
lp − 1, 2lπ−2

}
if 2 ∈ π;

(iii) dπ≥ lπ if 2 /∈ π and dπ′≥ lπ − 1 if 2 ∈ π;
(iv) eπ≥ 1

2 lπ if 2 /∈ π and eπ′≥ 1
2(lπ − 1) if 2 ∈ π.

Proof. (i). Suppose first that 2 /∈ π. Then for every finite p-group P , define f(P ) by

2f(P )−1 + f(P ) − 1 = bp(P ).

Then f satisfies (BP1) by the preceding lemma, and it satisfies (BP2) because bp satisfies

it and the function 2x−1+x+1 is strictly increasing for x ≥ 0. Therefore by Theorem 4.2.3,

lπ(G) ≤ maxp∈π
{
f(Ap), f(Bp)

}
and so

2lπ−1 + lπ − 1 ≤ max
p∈π

{
2f(Ap)−1 + f(Ap) − 1, 2f(Bp)−1 + f(Bp) − 1

}

= max
p∈π

{
bp(A), bp(B)

}
= bπ.

If 2 ∈ π, we use the fact that lπ − 1 ≤ lπ′; thus

2lπ−2 + lπ − 2 ≤ 2lπ′−1 + lπ′ − 1 ≤ bπ′ .

The proof of the other statements is similar.
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4.3 Connections between Fitting length and π-lengths

If G is a soluble group of Fitting length n = n(G), then it is always possible to obtain

from its Fitting series a series whose factors are π- and π′-groups with n
2 π-factors if n is

even and (n+1)
2 π-factors if n is odd. So 2lπ(G) ≤ n+1 for every set of primes π. Since also

2lπ′ ≤ n+1, we also have lπ + lπ′ ≤ n+1. The next theorem shows that products of two

finite nilpotent groups have the property that n(G) ≤ 2lp(G) and n(G) ≤ lp(G) + lp′(G)

for at least one prime p.

4.3.1 Theorem. Let the group G be the product of its finite nilpotent subgroups A

and B. Then

(i)

n(G) ≤ 2 max
p∈±!P

{
lp(G)

}
,

(ii)

n(G) ≤ 2 max
p∈±!P

{
lp′(G)

}
+ 1 and

(iii)

n(G) ≤ max
p∈±!P

{
lp(G) + lp′(G)

}
.

Proof. Suppose that the group G is a minimal counterexample for one of the above

inequalities. Since the classes of groups H such that

2 max
p∈±!P

{
lp(H)

}
≤ 2 max

p∈±!P

{
lp(G)

}

2 max
p∈±!P

{
lp(H)

}
≤ 2 max

p∈±!P

{
lp′(G)

}
+ 1

or

max
p∈±!P

{
lp(H) + lp′(H)

}
≤ max

p∈±!P

{
lp(G) + lp′(G)

}

are Q-closed and the classes of groups H such that n(G) ≤ k form Schunck classes,

the group G can be assumed primitive by Lemma 1.3.1. Now by Lemma 4.2.1, we have

n(G) ≤ 2lp(G), n(G) ≤ 2lp′(G) and n(G) ≤ lp(G)+ lp′(G) where p is the exponent of the

unique minimal normal subgroup of G. So the theorem is true also for primitive groups.

The last theorem generalizes a result of R. Maier [35]:

4.3.2 Corollary. Let G be a finite group G. Then the following statements are equiv-

alent:

(i) G is the product of its nilpotent subgroups A and B and lp(G) ≤ 1 for all primes p.
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(ii) G is metanilpotent.

Proof. (i) ⇒ (ii). This follows directly from Theorem 4.3.1 that n(G) ≤ 2, in other

words, G is metanilpotent.

(ii) ⇒ (i). Since the class of finite nilpotent groups forms a Schunck class, the soluble

group G has a nilpotent projector P (see Section 3.4). Now since G/F (G) is nilpotent,

G = PF (G) where P is a nilpotent subgroup, whence G is the product of two nilpotent

subgroups. The statement about the p-length is trivial.

Remark. There are finite soluble groups G satisfying lp(G) ≤ 1 for all primes p

which are not metanilpotent and therefore do not admit a factorization by two nilpotent

subgroups, e.g. if G is the regular wreath product of three groups of orders p, q and r

where p, q and r are distinct primes. The group G is also an example of a group satisfying

n(G) ≤ max
p∈±!P

{
lp(G) + lp′(G)

}

but which is not the product of two nilpotent subgroups.

Question. Does every finite soluble group satisfying

n(G) ≤ 2 max
p∈±!P

{
lp(G)

}
or n(G) ≤ 2 max

π⊆±!P

{
lπ(G)

}

admit a factorization by two nilpotent subgroups?

Recall that a group is called modular if its subgroup lattice is modular. Modular finite

nilpotent groups can also be characterized as follows:

4.3.3 Lemma. Let G be a finite nilpotent group. Then G is modular if and only if

AB = BA for all subgroups A and B of G.

Proof. Let G be a modular nilpotent group. We show that AB = BA for all sub-

groups A and B of G. Suppose that this is false and let G be a minimal counterexample.

Then G has subgroups A and B such that AB is not a subgroup of G (cf. Lemma 1.1.2),

A and B are proper subgroups of G and we have G = 〈A, B〉. Now let M be a maximal

subgroup of G that contains A, then M = M ∩ 〈A, B〉 = 〈A, M ∩B〉 by the modularity

of G, and by the minimality of G, we have M = A(B ∩M). Now A∩B ≤ M and since

G is nilpotent, the index |G : M | = |B : B ∩ M | = p is a prime. So Lemma 1.1.1 yields

|AB| =
|A| · |B|
|A ∩ B| = p · |A| · |B ∩ M |

|A ∩ B ∩ M | = p · |M | = |G|

and therefore we have G = AB. This contradiction shows that in a modular nilpotent

group any two subgroups permute.
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Conversely, suppose that every two subgroups of the group G permute. We have to

show that the subgroup lattice of G is modular, i.e. that for arbitrary subgroups A, B

and C of G with A ≤ C, we have 〈A, B ∩ C〉 = 〈A, B〉 ∩ C. But this follows directly

from the ‘usual’ modular law of group theory: since any two subgroups of G permute,

we have AB = 〈A, B〉 and 〈A, B ∩ C〉 = A(B ∩ C), and hence by the modular law,

〈A, B ∩ C〉 = A(B ∩ C) = AB ∩ C = 〈A, B〉 ∩ C.

This can be used to prove that finite nilpotent modular groups having a complemented

abelian maximal normal subgroup are themselves abelian. This follows at once from the

following

4.3.4 Lemma (R. Maier [35]). Let P be a modular group of order pn and suppose

that N an abelian maximal normal subgroup of P which possesses a complement C Then

P is abelian.

Proof. By the maximality of N , we have |C| = p. Let 1 ,= x ∈ N . then
〈
x
〉

is a

subgroup of order p and
〈
x
〉
C is a subgroup of order p2 by the modularity of P . Thus〈

x
〉
C is abelian so that x commutes with every element of C and P must be abelian.

4.3.5 Theorem (R. Maier [35]). Let the finite group G = AB be the product of the

nilpotent modular subgroups A and B. Then G is metanilpotent.

Proof. Let G be a counterexample of minimal order. Since the class of metanilpotent

groups forms a saturated formation and the class of modular nilpotent groups is Q-

closed, G is a primitive group by Lemma 1.3.3. Denote with N its unique minimal

normal subgroup, then N = F (G) is elementary abelian of prime exponent p. Also,

we have A ,= B and by Proposition 3.1.8, A or B is contained in a maximal normal

subgroup M of G which must be factorized.

Since G is a minimal counterexample, M is metanilpotent, hence M = F2(G). By

Lemma 3.2.5, w.l.o.g. A is a Sylow p-subgroup of G and F2(G)/N is a p′-group and

it is easy to see that G/M is a cyclic p-group, whence AM = G. Therefore AM/M ∼=
A/A∩M = A/N and since N has a complement C in G, we have A = A∩CN = (A∩C)N

which shows that A ∩ C ∼= A/N is cyclic of order p.

So N is an abelian maximal normal subgroup of A which has a complement A∩C in

A, and by the modularity of A, the subgroup A is abelian by Lemma 4.3.4. But then we

have A ≤ CG(N) = N . This final contradiction shows that G must be metabelian.
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4.4 Bounds on Fitting length and derived length

Bounds on the Fitting length of a group G which is the product of its finite nilpotent

subgroups A and B can be obtained using the bounds on the p-lengths of G obtained in

Section 4.2 and the inequalities

n(G) ≤ 2 · max
p∈±!P

{
lp(G)

}

n(G) ≤ 2 · max
p∈±!P

{
lp′(G)

}
+ 1

n(G) ≤ max
p∈±!P

{
lp(G) + lp′(G)

}

established in Section 4.3. Slightly better bounds on the nilpotent length of G, still based

on the bounds in Theorem 4.1.2, are available via a closer analysis of the series described

in Lemma 4.2.1,

Because of the great number of possibilities, we will restrict ourselves to bounds

on n(G) in terms of dp(A) and dp(G) for all primes p since the methods used there

also lead to estimates in terms of bp, cp and ep.

4.4.1 Theorem. Let the finite group G be the product of its nilpotent subgroups A

and B. Then

(i)

n(G) ≤ 2d(A) + max
{
0, 2d2(A) − 4

}
+ 1 and

n(G) ≤ 2d(B) + max
{
0, 2d2(B) − 4

}
+ 1;

(ii)

n(G) ≤ d(A) + d(B) + max
{
0, d2(A) − 2, d2(B) − 2

}
;

(iii)

n(G) ≤ 2 max
{
d2′(A), d2′(B)

}
+ 1;

(iv) (Berger and Gross [9])

n(G) ≤ max
{
d(A) + d(B), 4

3

(
d(A) + d(B)

)
− 1

}
.

Proof. Suppose that the theorem is false and let the group G = AB be a minimal

counterexample to one of the inequalities. The classes of finite groups of nilpotent length

≤ k clearly form saturated formations, hence Schunck classes, and the class of nilpotent

groups H with dp(H) ≤ dp(A) for every prime p is Q-closed, similarly for B. Since in

addition the above functions are nondecreasing with dp(A) and dp(B) for all primes p,
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the minimal counterexample G must be primitive by Lemma 1.3.3. Thus it suffices to

prove the above inequalities in case G is primitive.

As all of the above inequalities hold for nilpotent groups G, we can also assume that

G ,= A and G ,= B and thus we infer from Lemma 3.2.5 that G has a unique minimal

normal subgroup N of prime exponent p, that w.l.o.g. A is a Sylow p-subgroup of G and

that B is a Hall p′-subgroup.

Since A is a Sylow p-subgroup of G, by Theorem 4.1.2, we have

lp(G) ≤
{

dp(A) if p is odd
max

{
d2(A), 2d2(A) − 2

}
if p = 2.

Therefore we have

(∗) lp(G) ≤ d(A) + max
{
0, d2(A) − 2

}

in any case.

Similarly, by Theorem 4.2.3, we obtain

(∗∗)

lp′(G) ≤ max
q∈±!P\{p}

{
dq(A), dq(B), 2d2(A) − 2, 2d2(B) − 2

}

= max
q∈±!P\{p}

{
dq(B), 2d2(B) − 2

}

= d(B) + max
{
0, d2(B) − 2

}
,

observing that A is a p-group.

Now by Lemma 4.2.1 and (∗),

n(G) ≤ 2lp(G) ≤ 2d(A) + max
{
0, 2d2(A) − 4

}

≤ 2lp(G) ≤ 2d(A) + max
{
0, 2d2(A) − 4

}
+ 1.

By (∗∗),
n(G) ≤ 2lp′(G) + 1 ≤ 2d(B) + max

{
0, 2d2(B) − 4

}
+ 1.

This proves (i).

Next, again by Lemma 4.2.1, n(G) ≤ lp(G) + lp′(G) and so by (∗) and (∗∗),

n(G) ≤ d(A) + max
{
0, d2(A) − 2

}
+ d(B) + max

{
0, d2(B) − 2

}
.

Since either A or B is a 2′-group, we have d2(A) = 0 or d2(B) = 0 and hence

n(G) ≤ d(A) + d(B) + max
{
0, d2(A) − 2, d2(B) − 2

}
,

proving (ii).
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To see that (iii) is true, we have to consider the cases p = 2 and p ,= 2 separately.

Assume first that p = 2 and hence that B is a 2′-group. Then by (∗∗)

n(G) ≤ 2lp′(G) + 1 ≤ 2d(B) + max
{
0, 2d2(B) − 4

}
+ 1 = 2d2′(B) + 1.

If p ,= 2, A is a 2′-group and therefore we have

n(G) ≤ 2lp(G) ≤ 2d(A) + max
{
0, 2d2(A) − 4

}
+ 1 = 2d2′(A) ≤ 2d2′(A) + 1

by (∗). Thus (iii) holds.

To prove (iv), suppose first that d(A) ≤ 2 and d(B) ≤ 2. Then by (ii), n(G) ≤
d(A) + d(B) and (iv) holds. Since we have also excluded the cases G = A and G = B,

we may assume that d(A) > 0 and d(B) > 0, hence that d(A) + d(B) ≥ 3. Then

d(A) + d(B) ≤ 4
3

(
d(A) + d(B)

)
− 1 and thus it remains to show that

n(G) ≤ 4
3

(
d(A) + d(B)

)
− 1.

Consider next the case when p = 2 and 2d(A) − 2 ≤ d(B) + 1. Then

2d(A) − 2 + d(B) ≤ 4
3

(
d(A) + d(B)

)
− 1

and since we also have d(A) ≤ d(B) + 1, we obtain that

n(G) = lp(G) + lp′(G) ≤ max
{
d(A), 2d(A) − 2

}
+ d(B) ≤ 4

3

(
d(A) + d(B)

)
− 1.

If p = 2 and 2d(A) − 2 > d(B), then we have

2d(B) + 1 ≤ 4
3

(
d(A) + d(B)

)
− 1

and hence

n(G) ≤ 2lp′(G) + 1 ≤ 2d(B) + 1 ≤ 4
3

(
d(A) + d(B)

)
− 1.

Similarly, if p ,= 2 and 2d(B) − 2 ≤ d(A) + 1, then

n(G) = lp(G) + lp′(G) ≤ d(A) + max
{
d(B), 2d(B) − 2

}
≤ 4

3

(
d(A) + d(B)

)
− 1

and finally if p > 2 and 2d(B) − 2 > d(A) + 1. then

n(G) ≤ 2lp(G) ≤ 2d(A) ≤ 4
3

(
d(A) + d(B)

)
− 1.

Remark. The difference of the above inequalities is essentially due to the irregular

behaviour of the prime 2, for if A and B have odd order, then clearly n(G) ≤ d(A)+d(B).

Since in fact l2(G) ≤ d2(G) if d3(G) ≤ 1 by Theorem 4.1.2, it can be checked easily that
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if d3(A) ≤ 1 when d2(B) ≥ 2 and d3(B) ≤ 1 if d2(A) ≥ 2, then we obtain

n(G) ≤ d(A) + d(B) and n(G) ≤ 2d(A) + 1.

These inequalities, and thus the results of Theorem 4.4.1 for groups of odd order, are

best-possible: if p and q are distinct primes, and Cp and Cq denote cyclic groups of order

p and q respectively, then a group of the form G = Cp
∩∪ Cq

∩∪ . . . ∩∪ Cp
∩∪ Cq

∩∪ Cp

where Cq occurs k times satisfies n(G) = 2k + 1. Moreover, it is the products of its

Sylow p- and q-subgroups which have derived lengths k + 1 and k respectively by [26],

Theorem 3.5.1.

In this context, it should also be mentioned that Berger and Gross [9] conjecture

that l2(G) ≤ d(G) in any case which would, as has been remarked by Berger and Gross

themselves, imply that n(G) ≤ d(A) + d(B) and n(G) ≤ 2d(A) + 1 always.

Also, (ii) improves a result of Gross [22] who shows that n(G) ≤ d(A) + d(B) if

c2(A) ≤ 3 and c2(B) ≤ 3.

A bound on the Fitting length similar to (i), however based on the inequalities in

terms of cp instead of those involving dp has been obtained by Heineken [29].

Next, we will obtain some information about the derived length of a finite group G

which is the product of its nilpotent subgroups A and B in terms of the derived lengths

or classes of A and B.

The main problem is that hardly anything is known about the derived length of G if

G itself is nilpotent. In fact, the only nontrivial result seems to be Itô’s theorem which

states that the derived length of a product of two abelian groups has derived length at

most 2 (Itô [32]).

In this context, we also mention that the class of the nilpotent group G is not bounded

by the classes (or derived lengths) of the subgroups A and B: in fact, for every nonneg-

ative integer n, there exist groups G of order p2n which are the product of two abelian

subgroups A and B with A ! G (and thus d(G) ≤ 2) such that c(G) = n, see Dicken-

schied [12], Beispiel 7.1 for details of the construction.

However, it is possible to obtain bounds on the derived length of certain quotient

groups of a group G which is the product of two nilpotent subgroups A and B, such

as G/F (G) and G/Φ(G) ∩ Oπ(G), where π is the set of common prime divisors of |A|
and |B|.

To see that groups G that are minimal subject to d
(
G/Φ(G)

)
= k are primitive, in

view of Lemma 1.3.1, the following lemma is useful:

4.4.2 Lemma. The class of finite soluble groups G that satisfy d
(
G/Φ(G)

)
≤ n

equals the class of finite groups G such that G(n−1) is nilpotent, i.e. the class of groups
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such that d
(
G/F (G)

)
≤ n − 1; this class is S-, Q-, D0- and EΦ-closed; in other words, it

is a subgroup-closed saturated Formation.

Proof. We show first that the two classes are equal: if G(n−1) is nilpotent, it is con-

tained in the Fitting subgroup F (G) of G. Since F (G)/Φ(G) is abelian, we have G(n) ≤
Φ(G) and G/Φ(G) has derived length ≤ n. On the other hand, if G(n) = (G(n−1))′ ≤
Φ(G), then G(n−1)Φ(G)/Φ(G) ≤ F

(
G/Φ(G)

)
= F (G)/Φ(G) and so G(n−1) ≤ F (G),

hence it is nilpotent.

That the class in question is closed with respect to subgroups, homomorphic images

and finite direct products can be checked easily using the second definition. Saturation

is obvious from the first.

If the group G is the product of its nilpotent subgroups A and B, this can be used

to reduce the search for a bound on d
(
G/Φ(G)

)
to finding bounds in the special case

when A and B have coprime orders.

4.4.3 Proposition. Suppose that f : N × N → ±"N0 is a function satisfying

(i) f(A, B) = f(A∗, B∗) if A ∼= A∗ and B ∼= B∗ for all A, B ∈ N;

(ii) f(A/M, B/N) ≤ f(A, B) for all finite nilpotent groups A and B and for all

M ! A, N ! B and

(iii) if the finite group G is the product of its nilpotent subgroups A and B and A

and B have coprime order, then d
(
G/Φ(G)

)
≤ f(A, B).

Then we have d
(
G/Φ(G)

)
≤ f(A, B) for every group G that is the product of its

nilpotent subgroups A and B.

Proof. Suppose that the group G is a counterexample of minimal order to the propo-

sition. By the minimality of G, if 1 ,= N ! G, then we have

d
(
(G/N)/Φ(G/N)

)
≤ f(AN/N, BN/N) = f(A/A ∩ N, B/B ∩ N) ≤ f(A, B)

by (i) and (ii). Therefore every proper epimorphic image belongs to the Schunck class

described in Lemma 4.4.2 for n = f(A, B) but G does not belong to that class. Thus

G must be primitive by Lemma 1.3.1. If A = B (= G), then G is cyclic of prime order,

and since G = A · 1, we have

1 = d
(
G/Φ(G)

)
= d(G) ≤ f(A, 1) ≤ f(A, B).

Thus we may assume that A ,= B. But now by Lemma 3.2.5, A and B have coprime

orders and so by (iii), we have

d
(
G/Φ(G)

)
≤ f(A, B).
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This final contradiction proves the proposition.

For every n ∈ ±"N, consider the classes of groups G such that G(n) is a nilpotent

π-group. Although these classes are not saturated, groups G that are minimal subject

to not belonging to one of these classes and which are the product of two nilpotent

subgroups A and B still have a structure very similar to that of a primitive product of

two nilpotent subgroups if π is chosen to be the set of common prime divisors of |A|
and |B|:

4.4.4 Lemma. Suppose that the finite group G is the product of its nilpotent sub-

groups A and B and let π = σ(A) ∩ σ(B). If there is an integer n such that (G/K)(n)

is a nilpotent π-group for all normal subgroups K ,= 1 of G but G(n) is not a nilpotent

π-group, then G has a unique minimal normal subgroup N of prime exponent p; further-

more G(n) = N , F (G) is a p-group, and (w.l.o.g.) A and B are a Sylow p-group of G

and a Hall p′-subgroup of G respectively. In particular, π = ∅.

Proof. Suppose first that G has two distinct minimal normal subgroups N and N∗

and let H/N = (G/N)(n) and H∗/N∗ = (G/N∗)(n). Then G(n) is contained in H ∩H∗ =

(H ∩ H∗)/(N ∩ N∗) which is a nilpotent normal π-group by Lemma 1.3.5 and the fact

that H/N and H∗/N∗ are nilpotent π-groups. Therefore G must have a unique minimal

normal subgroup N which is an elementary abelian p-group for some prime p because

G is soluble, and also the Fitting subgroup of G must be a p-group.

Next, we show that w.l.o.g. A is a Sylow p-subgroup of G and that B a Hall p′-

subgroup: assume first that Φ(G) ,= 1. Then we must have N ≤ Φ(G), and since

(G/N)(n) is nilpotent, we have G(n)Φ(G)/Φ(G) ≤ F
(
G/Φ(G)

)
= F (G)/Φ(G). Therefore

we have G(n) ≤ F (G) and thus G(n) is a nilpotent p-group. Therefore p /∈ π and we may

suppose w.l.o.g. that p divides |A| but not |B|. In particular, B is a p′-group and A

contains a Sylow p-subgroup Ap of G whence F (G) ≤ Ap. Now Ap′ centralizes Ap since

A is nilpotent and therefore Ap′ ≤ CG

(
F (G)

)
≤ F (G). But F (G) is a p-group, from

which we deduce that Ap′ = 1. Hence A is a p-group and we have already observed that

B is a p′-group. Then, however, it follows from Lemma 1.1.1 that A and B must be a

Sylow p- and Hall p′-subgroups of G, and the lemma is proved in this case.

If Φ(G) = 1, G is primitive by Lemma 3.2.3. If A = B (= G), then G is a nilpotent

π-subgroup; therefore we must have A ,= B and so by Lemma 3.2.5, A and B are a

Sylow p- and a Hall p′-subgroup of G.

Therefore we have π =
{
p
}
∩ p′ = ∅ in both cases. Since (G/N)(n) is a π-group, we

have (G/N)(n) = 1 and hence G(n) ≤ N . Since G(n) ,= 1 by hypothesis, we must have

N = G(n) by the minimality of G.



4.4 Bounds on Fitting length and derived length 66

Now we are ready to prove the bounds on the derived length of G/Oπ(G) ∩ Φ(G).

4.4.5 Theorem. Let the group G = AB be the product of its finite nilpotent sub-

groups A and B. If π is the set of primes that divide the orders of both A and B, then

G(n) is a nilpotent π-subgroup contained in Φ(G), where

n = max
{
cσ′(A), 1

2dσ(A)
(
dσ(A) + 1

)}
+ max

{
cτ ′(B), 1

2dτ (B)
(
dτ(B) + 1

)}
,

and σ and τ are arbitrary sets of odd primes.

Proof. We show first by way of contradiction that G(n) is a nilpotent π-group, so

suppose that G is a counterexample of minimal order. If 1 ,= N is a normal subgroup

of G, then we have

n ≥ max
{
cσ′(AN/N), 1

2dσ(AN/N)
(
dσ(AN/N) + 1

)}

+ max
{
cτ ′(BN/N), 1

2dτ (BN/N)
(
dτ (BN/N) + 1

)}

whence (G/N)(n) is a nilpotent π-group for all normal subgroups N ,= 1 of G, and so by

Lemma 4.4.4, G has a unique minimal normal subgroup N of prime exponent p, w.l.o.g.

A is a Sylow p-subgroup and B is a Hall p′-subgroup of G. Moreover, G(n) ≤ N and also

F = F (G) is a p-group.

If p /∈ σ, consider the group G/Z where Z = Z(F ): Clearly,

1 < Z(A) ≤ Z = Z(F ) ≤ CG(F ) ≤ F,

therefore cp(A/Z) < cp(A). Since A is a p-group, we have

max
{
cσ′(A), 1

2dσ(A)
(
dσ(A) + 1

)}
= cp(A) = c(A)

and similarly

c(AZ/Z) = max
{
cσ′(AZ/Z), 1

2dσ(AZ/Z)
(
dσ(AZ/Z) + 1

)}
.

Therefore
n − 1 ≥ max

{
cσ′(AZ/Z), 1

2dσ(AZ/Z)
(
dσ(AZ/Z) + 1

)}

+ max
{
cτ ′(BZ/Z), 1

2dτ (BZ/Z)
(
dτ (BZ/Z) + 1

)}

which shows that already (G/Z)(n−1) = 1. Since Z is abelian, we must have G(n) = 1.

This contradiction shows that we must have p ∈ σ; in particular, p is odd.

Since F = Op′p(G) and p ,= 2, we have dp(A/F ) = d(A/F ) ≤ d(A) − 1 = dp(A) − 1

by Theorem 4.1.1 and therefore

max
{
cσ′(AF/F ), 1

2dσ(AF/F )
(
dσ(AF/F ) + 1

)}
= 1

2d(A/F )
(
d(A/F ) + 1

)
.
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Thus
n − d(A) ≥ max

{
cσ′(AF/F ), 1

2dσ(AF/F )
(
dσ(AF/F ) + 1

)}

+ max
{
cτ ′(BF/F ), 1

2dτ (BF/F )
(
dτ (BF/F ) + 1

)}

This shows that G/F has derived length ≤ n − d(A), yielding that

d(G) ≤ d(F ) + d(G/F ) ≤ n

since F ≤ A. This final contradiction shows that G(n) is a nilpotent π-group.

It remains to show that G(n) ≤ Φ(G) for every finite group G that is the product of

two nilpotent subgroups A and B. But since our first result implies that G(n) = 1 if A

and B have coprime orders, this follows at once from Proposition 4.4.3.

Remark. That we have to treat the prime 2 differently is essentially due to the fact

that for a Sylow 2-subgroup P of the finite soluble group G, it is possible to have

d
(
PO2′2(G)/O2′2(G)

)
= d(P ).

However, this can only happen when P is non-abelian and also the Sylow 3-subgroups

of G are non-abelian (cf. Theorem 4.1.1). Transferring these considerations to the proof

of the theorem, we obtain that the theorem also holds for arbitrary sets of primes σ

and τ , provided that A has an abelian Sylow 3-subgroup if the Sylow 2-subgroup of B

is non-abelian and viceversa, i.e. if d3(A) ≤ 1 whenever d2(B) ≥ 2 and d3(B) ≤ 1 if

d2(A) ≥ 2.

If we set σ = τ = ∅ in the preceding theorem, we obtain the following

4.4.6 Corollary (Gross [22] and Pennington [40]). If the finite group G is the prod-

uct of its nilpotent subgroups A and B of classes c and d, then G(c+d) is a nilpotent π-

group contained in the Frattini subgroup of G; in particular G/Φ(G) has derived length

≤ c + d.

4.4.7 Corollary. If the group G is the product of its nilpotent subgroups A and B

of coprime order, then d(G) ≤ c(A) + c(B).

The irregular behaviour of the prime 2 can also be compensated by considering a

Hall 2′-subgroup of G instead of a Sylow 2-subgroup. The key to this is the observation

that most statements of Theorem 4.1.1 can be extended to statements about a nilpotent

Hall π-subgroup of a group G if we replace p by π and p′ by π′. We state some of the

most important consequences.
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4.4.8 Lemma (Berger and Gross [9]). Let G be a finite soluble group.

(i) If Oπ′π(G)/Oπ′(G) is nilpotent, then Oπ′π(G) =
⋂

p∈π Op′p(G).

(ii) If H is a nilpotent Hall π-subgroup of G and c(H) > 0, then

c
(
HOπ′π/Oπ′π(G)

)
< c(H);

if 2 /∈ π and d(H) > 0, then also

d
(
HOπ′π(G)/Oπ′π(G)

)
< d(H).

Proof. (i) Since Oπ′π(G)/Oπ′(G) is nilpotent, it is clear that Oπ′π(G) ≤ Op′p(G) for

all p ∈ π. Since Oπ′(G) ≤ Op′p(G) for all primes p ∈ π, Oπ′(G) must be contained in

Op′(G) for all such primes. On the other hand,
⋂

p∈π Op′(G) is a normal π′-subgroup

of G, therefore it is contained in Oπ′(G). This shows that Oπ′(G) =
⋂

p∈π Op′(G). Now

a π′-element contained in
⋂

p∈π Op′p(G) is contained in Op′(G) for all p ∈ π, whence it is

contained in O′
π(G). This shows that

(⋂
p∈π Op′p(G)

)
/Oπ′(G) is a π-group and therefore

⋂
p∈π Op′p(G) ≤ Oπ′π(G). This proves (i).

(ii) Denote with Hp the normal Sylow p-subgroup of H . For all primes p, consider the

canonical homomorphisms

αp: Hp −→ HpOp′p(G)/Op′p(G).

These homomorphisms induce a homomorphism

α: H = /\
p∈π

Hp −→ D = /\
p∈π

HpOp′p(G)/Op′p(G)

whose kernel is H ∩
(⋂

p∈π Op′p(G)
)

= H ∩ Oπ′π(G) by part (i). This, together with an

isomorphism theorem, shows that

c
(
HOπ′π(G)/Oπ′π(G)

)
= c

(
H/H ∩ Oπ′π(G)

)

≤ c(D) = max
p∈π

{
c
(
HpOp′p(G)/Op′p(G)

)}

Now by Theorem 4.1.1, for every prime p,

c
(
HpOp′p(G)/Op′p(G)

)
< c(Hp)

because the Hp are Sylow p-subgroups of G. This shows that

c
(
HOπ′π(G)/Oπ′π(G)

)
≤ max

p∈π

{
c
(
HpOp′p(G)/Op′p(G)

)}

< max
p∈π

{
c(Hp)

}
= c(H)

as required.
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If p ,= 2 and Hp ,= 1, also

d
(
HpOp′p(G)/Op′p(G)

)
< d(H)

so that by the same argument,

d
(
HOπ′π(G)/Oπ′π(G)

)
< d(H)

if 2 /∈ π.

The following theorem seems rather similar to the preceding Theorem 4.4.5; however

its results are in terms of the derived lengths of A and B only and do not involve c2(A)

or c2(B).

4.4.9 Theorem. Let the group G = AB be the product of its finite nilpotent sub-

groups A and B. If π is the set of primes that divide the orders of both A and B, then

G(n) is a nilpotent π-subgroup contained in Φ(G), where

n = 1
2d(A)

(
d(A) + 1

)
+ 1

2d(B)
(
d(B) + 1

)

+ max
{

1
2d2(A)

(
d2(A) + 1

)
, 1

2d2(B)
(
d2(B) + 1

)}
.

Proof. Like in the proof of Theorem 4.4.5, in view of Proposition 4.4.3, it suffices

to show that G(n) is a nilpotent π-group. Suppose that this is false and let G be a

counterexample of minimal order. Thus if N ! G, then

n ≥ 1
2d(AN/N)

(
d(AN/N) + 1

)
+ 1

2d(BN/N)
(
d(BN/N) + 1

)

+ max
{

1
2d2(AN/N)

(
d2(AN/N) + 1

)
, 1

2d2(BN/N)
(
d2(BN/N) + 1

)}
.

Therefore by Lemma 4.4.4, w.l.o.g. A is a Sylow p-subgroup of G containing the unique

minimal normal subgroup N of G and also F = F (G) ≤ A; moreover B is a Hall p′-

subgroup of G. We may also assume that d(A) = dp(A) > 0 and d(B) > 0 since otherwise

G = B or G = A and in these cases the theorem is obviously true.

Consider first the case when p ,= 2. Then we have d(AF/F ) < d(A) by Theorem 4.1.1

and therefore

n − d(A) ≥ 1
2d(AF/F )

(
d(AF/F ) + 1

)
+ 1

2d(BF/F )
(
d(BF/F ) + 1

)

+ 1
2d2(B)

(
d2(B) + 1

)
.

This shows that d(G/F ) ≤ n − d(A) and since F ≤ A, we have

d(G) ≤ d(F ) + d(G/F ) ≤ d(A) + n − d(A) = n.

This contradiction shows that we must have p = 2.
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Therefore we have

1
2d(AF/F )

(
d(AF/F ) + 1

)
+ 1

2d2(AF/F )
(
d2(AF/F ) + 1

)
= d2(A)

(
d2(A) + 1

)
.

Now by Lemma 4.2.1, F3 = F3(G) = O2′22′2(G) and by Theorem 4.1.1, we have

d(AF3/F3) < d(A);

moreover, applying Lemma 4.4.8 with π = 2′, we have

d(B) ≥ d(BF/F ) > d(BF2/F2) ≥ d(BF3/F3)

where F2 = F2(G). Hence

d(G/F3) ≤ d2(AF3/F3)
(
d2(AF3/F3) + 1

)
+ 1

2

(
d(BF3/F3)(d(BF3/F3) + 1

)

≤ n − 2d(A) − d(B)

and since by Lemma 4.2.1, F ≤ A, the group F2/F is isomorphic with a section of B

and F3/F2 is isomorphic with a section of A, we obtain

d(G) ≤ d(F ) + d(F2/F ) + d(F3/F2) + d(G/F3)

≤ d(A) + d(B) + d(A) + n − 2d(A) − d(B)

= n.

This final contradiction proves the theorem.

Remark. As in the remark after Theorem 4.4.5, the bound can be improved signifi-

cantly if d3(A) ≤ 1 whenever d2(B) ≥ 2 and d3(B) ≤ 1 if d2(A) ≥ 2. In this case, we

already obtain that G(n) ≤ Φ(G) ∩ Oπ(G) where

n ≥ 1
2d(AN/N)

(
d(AN/N) + 1

)
+ 1

2d(BN/N)
(
d(BN/N) + 1

)
.

There is yet another possibility to gain some information about the derived length of

a product of two nilpotent subgroups:

4.4.10 Theorem. Let the finite group G be the product of its nilpotent subgroups A

and B. Then G/F (G) has derived length at most k where

k =
(
d(A) + max

{
0, d2(A) − 1

})(
d(B) + max

{
0, d2(B) − 1

})
.

Proof. Suppose that G is a counterexample of minimal order. Then we have

d
(
(G/N)/F (G/N)

)
≤ k

for all normal subgroup N ,= 1 of G but d
(
G/F (G)

)
> k. Since the class of groups H

satisfying d
(
H/F (H)

)
≤ k forms a saturated formation, hence is a Schunck class, by
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Lemma 4.4.2 G must be primitive. Since our statement is trivial if G is nilpotent, we

may also assume that d(A) > 0, d(B) > 0 and also that A ,= B, hence by Lemma 3.2.5,

w.l.o.g. A is a Sylow p-subgroup of G and B is a Hall p′-subgroup, where p is the exponent

of the unique minimal normal subgroup F = F (G) of G.

Suppose first that p ,= 2, or that d(AF/F ) < d(A) if p = 2. Observe that we also

have d(A/F ) < d(A) if p ,= 2 by Theorem 4.1.1 since F = Op′p(G). Therefore if we let

F2 = F2(G), then

d(G/F2) ≤ d(AF/F )
(
d(BF/F ) + max

{
0, d2(BF/F ) − 1

})

≤
(
d(A) − 1

)(
d(B) + max

{
0, d2(B) − 1

})

≤ k − d(B).

Since by Lemma 4.2.1, F2/F ≤ BF/F , we have

d(G/F ) ≤ d(F2/F ) + d(G/F2) ≤ n.

This contradiction shows that we must have p = 2 and d(AF/F ) = d(A). This also

shows that d(A) ≥ 2 because if we had d(A) = 1, then A would be abelian, hence

A ≤ CG(F ) = F which would imply that d(AF/F ) = 0 < d(A).

Now by Lemma 4.2.1, F2 = O22′(G) and F3 = F3(G) = O2′2(G) and so by Theo-

rem 4.1.1, d(AF3/F3) < d(A); moreover by Lemma 4.4.8, d(BF3/F3) < d(B). If F4 =

F4(G), then we have

d(G/F4) ≤
(
2d(AF3/F3) − 1

)(
d(BF3/F3)

)

≤
(
2d(A) − 1 − 2

)(
d(B) − 1

)

≤
(
2d(A) − 1

)(
d(B) − 1

)
− (2d(A) − 1) − 2d(B) + 2

≤
(
2d(A) − 1

)(
d(B) − 1

)
− d(A) − d(B) −

(
d(B) − 1

)

Since F2/F ≤ BF/F , F3/F2 ≤ AF2/F2 and F4/F3 ≤ BF3/F3 by Lemma 4.2.1, we have

d(G/F ) ≤ d(F2/F ) + d(F3/F2) + d(F4/F3) + d(G/F4)

≤ d(B) + d(A) +
(
d(B) − 1

)

+(2d(A) − 1)
(
d(B) − 1) − d(A) − d(B) − (d(B) − 1

)

= k.

Thus we have reached a final contradiction which proves the theorem.

Remark. Again, if we have d3(A) ≤ 1 in case d2(B) ≥ 2 and d3(B) ≤ 1 if d2(A) ≥ 2

in the preceding theorem, then we obtain that d
(
G/F (G)

)
≤ d(A)d(B), a result that has
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already been obtained by Gross [22] under the hypothesis that A and B have coprime

orders.

4.4.11 Corollary. If the finite group G is the product of its nilpotent subgroups A

and B, then has derived length at most

d
(
G/Φ(G)

)
≤

(
d(A) + max

{
0, d2(A) − 1

})(
d(B) + max

{
0, d2(B) − 1

})
+ 1

and if π = σ(A) ∩ σ(B) and

k =
(
d(A) + max

{
0, d2(A) − 1

})(
d(B) + max

{
0, d2(B) − 1

}
) + max

{
d(A), d(B)

})
,

then G(k) is a nilpotent π-group contained in the Frattini subgroup of G.

Proof. The first statement follows directly from the fact that F (G)/Φ(G) is abelian.

For the second statement, let N be the π-component of F = F (G). Since F =

(A ∩ F )(B ∩ F ) by Theorem 3.1.5, we have F/N = (A ∩ F )N/N(B ∩ F )N/N . By

the definition of π, (A ∩ F )N/N and (B ∩ F )N/N have coprime orders, and since F/N

is nilpotent, F/N = (A ∩ F )N/N × (B ∩ F )N/N whence

d(F/N) ≤ max
{
d
(
(A ∩ F )N/N

)
, d

(
B ∩ F )N/N

)}
≤ max

{
d(A), d(B)

}
.

This shows that G(k) is a nilpotent π-group. Since the corollary is obviously true if G = 1,

we may also suppose that max
{
d(A), d(B)

}
≥ 1, and therefore by the first part, also

G(k) ≤ Φ(G).

The following theorem describes the special case when one of the factors is abelian.

4.4.12 Theorem. Let the finite group G be the product of an abelian group A and a

nilpotent group B. Then

(i) (Franciosi, de Giovanni, Heineken and Newell [16]) AF (G) ! G;

(ii) n(G) ≤ 3;

(iii) d
(
G/F (G)

)
≤ d(B);

(iv) G(n) ≤ Φ(G) ∩ Oπ(G) where π = σ(A) ∩ σ(B) and n = max
{
2d(B), 1

}
.

Proof. (i). If G = 1, this is clearly true, so suppose by finite induction that (i) is

true for all groups of smaller order than G. If G/Φ(G) satisfies the theorem, so does G

because F (G)/Φ(G) = F
(
G/Φ(G)

)
. Therefore we must have Φ(G) = 1.

Consider first the case when G possesses two distinct minimal normal subgroups N∗

and N∗∗. Denote with F ∗/N∗ and F ∗∗/N∗∗ the Fitting subgroups of G/N∗ and G/N∗∗,

then F ∗ ∩ F ∗∗ = F by Lemma 1.3.5 and since by Theorem 3.1.5, F ∗ and F ∗∗ are

factorized, by Lemma 1.1.9, AF ∗ ∩ AF ∗∗ = AF , which is a normal subgroup of G since

by induction hypothesis, AF ∗ and AF ∗∗ are normal subgroups of G.
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Therefore we may assume that G possesses a unique minimal normal subgroup N

which is an elementary abelian p-group for a prime p, and, because Φ(G) = 1, the

group G is primitive. Since G can be assumed non-nilpotent, A or B is a p-group con-

taining N = F while the other is a p′-group by Lemma 3.2.5. If N = F ≤ A, then

A ≤ CG(F ) = F and thus A = F , proving that AF = F ! G.

There remains the case when F ≤ B. Then the p′-group F2/F = F (G/F ) is contained

in the Hall p′-subgroup AF/F of G/F and therefore AF2 ≤ AF . The other inclusion

AF ≤ AF2 is trivial, and by the minimality of G, the subgroup AF2/F = AF/F is

normal in G/F , or equivalently, AF ! G. This final contradiction proves (i).

(ii) follows directly from the fact that the series

1 " F (G) ! AF (G) ! G

has nilpotent factors. The same result about n(G) can be obtained as described in the

remark after Theorem 4.4.1, observing that we have d2(A) ≤ 1 and d3(A) ≤ 1 since A

is abelian.

The remaining statements follow from the remark after Theorem 4.4.10.

4.5 Properties of the Fitting quotient group

4.5.1 Proposition. Let the finite group G be the product of its nilpotent subgroups A

and B. Then:

(i) G/[A, B] is nilpotent. The factorizer of [A, B] is AG ∩ BG = (A ∩ BG)(B ∩AG).

(ii) Let A0 = A, B0 = B and G0 = G and for all i > 0, define Ai+1 = Ai ∩ BGi
i

and Bi+1 = Bi ∩AGi
i . Then Gi = AiBi is a factorized subgroup of G for all i and

Gi+1 ! Gi; moreover Gi/Gi+1 is nilpotent. If n is the smallest integer such that

Gn = Gn+1, then Gn = A ∩ B. Thus the series

G = G0 # G1 # · · · # Gn = A ∩ B

consists of factorized subnormal subgroups of G such that Gi/Gi+1 is a nilpotent

group.

Proof. (i) First observe that [A, B] ! 〈A, B〉 for arbitrary subgroups A and B

of G. Now AG = A[A, B] and BG = B[A, B] which shows that G/[A, B] is the product

of the normal nilpotent subgroups A[A, B]/[A, B] and B[A, B]/[A, B] and is therefore

nilpotent. By Lemma 1.2.1, the factorizer of [A, B] is A[A, B] ∩ B[A, B] = AG ∩ BG =

(A ∩ BG)(B ∩ AG).
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(ii) Suppose by finite induction that Gi = AiBi where Ai ≤ A and Bi ≤ B. (This is

clearly true if i = 0). Then Gi satisfies the hypothesis of the preceding part; therefore

Gi/Gi+1 is a nilpotent group, Gi+1 = Ai+1Bi+1 and Ai+1 ∩ Bi+1 = Ai ∩ Bi = A ∩ B. as

required.

Now suppose that Gn = Gn+1. Since Gn+1 = AGn
n ∩BGn

n , we must have AGn
n = Gn and

BGn
n = Gn and so neither An nor Bn is contained in a proper normal subgroup of Gn.

So it follows from Proposition 3.1.8 that Gn = An = Bn and so Gn = An ∩ Bn ≤ A ∩ B

proving that Gn = A ∩ B.

Recall that in Example 3.4.4, we have shown that the subgroup [A, B] above is not

necessarily prefactorized.

4.5.2 Corollary. Let the finite group G be the product of its nilpotent subgroups A

and B. If n is the length of the series defined in Proposition 4.5.1, then G has Fitting

length at most n + 1 and derived length at most

n · max
{
d(A), d(B)

}
+ min

{
d(A), d(B)

}
.

Proof. The series

G = G0 # G1 # · · · # Gn = A ∩ B $ 1

introduced in Proposition 4.5.1 has nilpotent factors (clearly also A ∩ B is nilpotent)

and its length is n + 1. This is clearly an upper bound for the Fitting length of G.

To obtain the bound on the derived length, consider the factor group Gi/Gi+1 for

some i: Gi = AiBi = AGi
i Bi; thus

Gi/A
Gi
i

∼= Bi/Bi ∩ AGi
i = Bi/Bi+1

whose derived length is ≤ d(B) and Gi/B
Gi
i

∼= Ai/Ai+1 which has derived length ≤
d(A). Since Gi+1 = AGi

i ∩ BGi
i , it follows that d(Gi/Gi+1) ≤ max

{
d(A), d(B)

}
. Clearly,

d(A ∩ B) ≤ min
{
d(A), d(B)

}
and also the second statement follows.

We have already proved in Proposition 3.1.2 that if G is the product of its nilpotent

subgroups A and B, then the commutator subgroups [Ap, Bp] are subnormal p-subgroups

and are therefore contained in the Fitting subgroup of G. Therefore the next proposition

applies in particular when F (G) ! N :

4.5.3 Proposition. Suppose that the group G is the product of its finite nilpotent

subgroups A and B. Suppose that N is a normal subgroup of G such that G/N is nilpo-

tent and that N contains [Ap, Bp] for every prime p dividing |G/N |. Then the subgroups
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AπN/N and BπN/N are normal subgroups of G/N for every set of primes π. In partic-

ular, AN/N and BN/N are normal subgroups of G. If moreover N is factorized, then

G is the direct product of AN/N and BN/N ,

G/N = AN/N × BN/N

= /\
p∈±!P

ApN/N × /\
p∈±!P

BpN/N.

Proof. Consider the Sylow p-subgroup ApN/N of AN/N . Since G/N is nilpotent,

ApN/N is centralized by the normal p-complement of G/N ; moreover [Ap, Bp] ≤ N by

hypothesis; therefore also BpN/N centralizes ApN/N which shows that ApN/N ! G/N .

Therefore also AπN/N = /\pππ ApN/N is a normal subgroup of G.

If N is factorized, then N = AN ∩ BN and therefore AN/N ∩ BN/N = 1, showing

that G/N = AN/N × BN/N . The rest of the statement follows.

4.5.4 Corollary. Let G = AB where A and B are finite and nilpotent. If M ! G

and N ! M such that M/N is nilpotent, if moreover N contains [Ap, Bp] for all primes p

dividing |M/N |, then AN ∩M and BN ∩M are normal subgroups of M . If M contains

AN ∩ BN , then (AN ∩ M)(AN ∩ M) = (A ∩ M)(B ∩ M).

Proof. Let X = AM ∩ BM be the factorizer of M . Then X/N is nilpotent by

Corollary 3.5.2 and therefore AN ∩ X ! X and BN ∩ X ! X. Hence AN ∩ M =

AN ∩ M ∩ X and BN ∩ M are normal subgroups of M .

If M contains AN ∩ BN , also M∗ = (AN ∩ M)(AB ∩ M) contains this intersection.

Thus, M∗/N is a factorized subgroup of G/N , and M∗ is a factorized subgroup of G.

Since by Theorem 3.1.5 the Fitting subgroup and therefore every term of the Fitting

series of a product of two nilpotent subgroups is factorized, we obtain

4.5.5 Corollary. Let Fk be the k-th term of the Fitting series of G = AB where A

and B are finite nilpotent subgroups of G. If k ≥ 1, then Fk+1/Fk is the direct product

of (A ∩ Fk+1)Fk/Fk and (B ∩ Fk+1)Fk/Fk.

In this context, also the following Proposition is of interest:

4.5.6 Proposition (Heineken [29]). Let the group G be the product of its finite nilpo-

tent subgroups A and B. If Fk = Fk(G) denotes the k-th term of the Fitting series of G,

then for all k ≥ 1, we have that (A ∩ Fk+1)Fk/Fk and (B ∩ Fk+1)Fk/Fk are normal

subgroups of G.

Proof. Since the setting is symmetrical in A and B, it clearly suffices to show that

(A ∩ Fk+1)Fk ! G. Since (A ∩ Fk+1)Fk = AFk ∩ Fk+1 by the modular law and G/Fk =
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(AFk)(BFk), we may in addition pass to the quotient group G/Fk−1, hence it remains

to show that (F2 ∩ A)F = AF ∩ F2 is normal in G where F = F (G) (= F1).

Suppose by induction on |G| that the proposition is true for all groups of smaller

order; in view of F/Φ(G) = F
(
G/Φ(G)

)
, we may also assume that Φ(G) = 1.

Next, consider the case when G contains two distinct minimal normal subgroups N∗

and N∗∗. Now let F ∗/N∗ = F (G/N∗), F ∗∗/N∗∗ = F (G/N∗∗) and F ∗
2 /F ∗ = F (G/F ∗),

F ∗∗
2 /F ∗∗ = F (G/F ∗∗) then we have F = F ∗ ∩ F ∗∗ and F2 = F ∗

2 ∩ F ∗∗
2 by Lemma 1.3.5,

observing that the classes of nilpotent and metanilpotent groups form Fitting forma-

tions. So we have AF = A(F ∗ ∩ F ∗∗) = AF ∗ ∩ AF ∗∗ by Lemma 1.1.9. Now by in-

duction hypothesis, AF ∗ ∩ F ∗
2 and AF ∗∗ ∩ F ∗∗

2 are normal subgroups of G and thus

AF ∗ ∩F ∗
2 ∩AF ∗∗ ∩ F ∗∗

2 = AF ∩ F2 = (A∩ F2)F is a normal subgroup of G as required.

There remains the case when G has a unique minimal normal subgroup; let p denote

its exponent. Since also Φ(G) = 1, we conclude that G is primitive. But in this case, by

Lemma 3.2.5, A is either a p-group and A ∩ F2 = F whence F = (A ∩ F2)F ! G or A

is a Hall p′-group whence F2 is contained in AF and therefore AF ∩ F2 = F2 ! G.

Next, we report a result of Heineken which will allow to relate products of finite

nilpotent subgroups to other classes of groups.

4.5.7 Proposition (Heineken [28]). Assume that the group G is the product of two

finite nilpotent subgroups A and B. Then G/F (G) ∈ R0X where X is the class of finite

groups whose order is divisible only by two primes one of which divides the order of A

while the other divides the order of B.

Indeed, from Heineken’s proof of the above proposition, a stronger result can be ob-

tained.

4.5.8 Proposition. Let the group G be the product of its finite nilpotent subgroups A

and B. If H/K is a principal factor of G such that F (G) ≤ K, then |G/CG(H/K)| is

divisible at most by one prime divisor of |A| and one of |B|; moreover one of these prime

divisors is the exponent of H/K.

Proof. Suppose that the proposition is true for all groups of smaller order than G:

this includes, of course, the case when G is nilpotent. Observe also that CG/N (H/K) =

CG(H/K)/N for every normal subgroup N of G with N ≤ K.

As a first case, assume that G possesses two distinct minimal normal subgroups N∗

and N∗∗. Let F ∗/N∗ and F ∗∗/N∗∗ denote the Fitting subgroups of G/N∗ and G/N∗∗

respectively, then F ∗ ∩ F ∗∗ = F = F (G) by Lemma 1.3.5. Refine the series

1 ! F ∗/F ! G/F
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to a chief series of G. Then by the Jordan-Hölder theorem, H/K is G-isomorphic with a

factor of that chief series; therefore we may assume that H/K itself belongs to that chief

series. Now if F ∗ ≤ K, then H/K is already a chief factor of G/F ∗ and the result follows

from the fact that CG(H/K)/N∗ = CG/N∗(H/K). If H/K is a chief factor of F ∗/F , then

since F ∗/F ∼=G F ∗∗F ∗/F ∗, the chief factor H/K is G-isomorphic with a chief factor

of G/F ∗∗ and the result follows again.

Hence we may assume that G has a unique minimal normal subgroup N . If Φ(G) > 1,

we have F/Φ(G) = F (G)/Φ(G) and the result follows by induction.

Therefore there remains the case when G is primitive and non-nilpotent. As before,

we may assume that H/K is a principal factor of the chief series of G/F obtained by

refining

1 " F2 ! G/F,

where F2/F = F (G/F ); by finite induction, we may also exclude the case when F2 ≤
K < H ≤ G. Now by Lemma 3.2.5, we may w.l.o.g. assume that A is a Sylow p-group

containing F and that B is a Hall p′-group of G, we also have F2/F ≤ BF/F . From the

last statement, it follows that H/K ≤ BqK/K where q is the exponent of H/K. Now

since B is nilpotent, Bq is centralized by Bq′ and therefore Bq′ ≤ CG(H/K). Since Bq′

is a Hall
{
p, q

}′
-subgroup of G, the order of G/CG(H/K) can be divisible by p and q

only.

From this, Proposition 4.5.7 follows with the help of the characterization of the Fitting

subgroup of a finite group as the intersection of the centralizers of all principal factors

of G.

Following Huppert [30], a finite group G is called a group with many Sylow bases if

set of Sylow subgroups of G containing exactly one Sylow subgroup for every prime p is

a Sylow basis of G, or equivalently, if every Sylow p-subgroup of G permutes with every

Sylow q-subgroup of G when p ,= q. 1

Of course, the groups of order pαqβ (where p and q are primes) are examples of groups

with many Sylow bases. In the following, we will denote the class of all such groups

by Q; clearly

Q =
⋃

p,q∈±!P
S{p,q}.

The class B of all finite groups with many Sylow bases can be characterized as follows:

1 These groups were first termed ‘Gruppen mit vielen Sylowsystemen’ by Huppert [30] who used the
term ‘Sylowsystem’ for what we call a Sylow basis.
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4.5.9 Theorem (Huppert [30]). The following statements about the finite group G

are equivalent:

(i) G is a group with many Sylow bases.

(ii) G is soluble; if H/K is a principal factor of G of exponent p, then there are a

prime q and nonnegative integers a and B such that the order of G/CG(H/K) is

paqb.

(iii) G is contained in the smallest formation that contains all groups whose order is

divisible by at most two primes.

A proof of this can also be found in [31], VI, § 3.

In the following, we will denote the class of groups with many Sylow bases with B;

we also recall that this class is S-closed. Furthermore, by (ii) and the characterization of

primitive soluble groups in Lemma 3.2.3 as those groups in which the unique minimal

normal subgroup is self-centralized, it is clear that the primitive B-groups are precisely

the primitive groups whose order is divisible by at most two primes.

There follows that primitive B-groups are products of their nilpotent subgroups since

in fact every Q-group is the product of its Sylow subgroups. As a consequence of this,

B is clearly contained in the smallest Schunck class that comprises all groups that are

the product of two finite nilpotent subgroups. To simplify notation, we will for the rest

of this section to denote the class of finite groups that are the product of two nilpotent

subgroups by M.

Now proposition can be used to show that M ⊆ NB in the following

4.5.10 Proposition. Let NB be the class of groups G that possess a normal sub-

group N such that N ∈ N and G/N ∈ B. Then

(i) NB is a saturated formation;

(ii) NB =
{
G | G/F (G) ∈ B

}
and

(iii) M ⊆ NB.

Proof. Since N, the class of all finite nilpotent groups, is Sn-closed, NF equals the

formation product of N and F and so it is a formation by [13], IV.1.8.

If G ∈ NB and N is a nilpotent normal subgroup of G such that G/N ∈ B, we

have N ≤ F (G) ∈ N. On the other hand, G/F (G) is an epimorphic image of G/N and

therefore G/F (G) ∈ QB = B. This shows that

NB =
{
G | G/F (G) ∈ B

}
.

From this and the fact that F (G)/Φ(G) = F
(
G/Φ(G)

)
for all finite groups G, it

follows immediately that NB is saturated. This proves (i) and (ii).
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(iii) Let G ∈ M. Then by Proposition 4.5.8, the chief factors of G/F (G) are of the

form described in Theorem 4.5.9, (ii) and so G/F (G) ∈ B, hence G ∈ NB.

4.5.11 Example. Let p be an odd prime that is not a Fermat prime. Suppose that

N is a cyclic group of order p, and let G be the semidirect product of N with its

automorphism group. Then CG(N) = N , and since G is soluble, G is primitive by

Lemma 3.2.3. Now the order of G is divisible by more than two primes (namely by p

and by all prime divisors of p−1 which is divisible by 2 and some other prime < p since

p is not a Fermat prime). So by the remark after Theorem 4.5.9, G does not belong to

the class of groups with many Sylow bases. But obviously, G is the product of N and a

subgroup of order p − 1 both of which are abelian.

The next example shows that a group G such that G/F (G) is a group with many

Sylow bases is not necessarily the product of two nilpotent subgroups.

4.5.12 Example. Let G and p be as in Example 4.5.11. Now let H = G ∩∪ C where

C is cyclic of order r where r is a prime ,= p such that r does not divide p− 1. Then H

is primitive by [13], A.18.5 since H is non-abelian and primitive. If H were the product

of two nilpotent subgroups, then one of them would have to be a Hall p′-subgroup of H

by Lemma 3.2.5, and since the Sylow p-subgroup of H equals its Fitting subgroup F ,

the quotient group G/F is isomorphic with a Hall p′-subgroup of G. On the other hand,

G/F is isomorphic with the regular wreath product of a group of order p − 1 with a

cyclic group of order r. But such a group is not nilpotent since its Sylow r-subgroup does

not centralize the Hall r′-part. This shows that H is not the product of two nilpotent

subgroups. But since the Sylow q-subgroups of G/F are normal for all primes q ,= r, the

factor group G/F is clearly a B-group.

The last example also shows that PQM, the smallest Schunck class containing M, is

properly contained in NB.

Question. Is NB the smallest formation (saturated formation) containing all prod-

ucts of two finite nilpotent groups?

If the answer to the first question is negative, is it true that the class M of finite groups

which are factorized by two nilpotent subgroups closed with respect to subgroups? This

would imply that M is itself a formation since M is D0-closed and Q-closed. Moreover,

every group with many Sylow bases would be the product of two nilpotent groups.

(Observe that in order to prove that M is S-closed, it would suffice to show that a

maximal normal subgroup of a product of two finite nilpotent groups is the product of

two finite nilpotent groups, for by Corollary 3.3.6, every nonnormal maximal subgroup
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NB•

〈EΦ,Q,S,D0〉M•

•
QSD0M • 〈EΦ,Q,R0〉M•

• •

SD0M = SM • QR0M• PQM = PQ(M ∩ W)•

• •
R0M

•
•

W • M•

B • W ∩ M•

•

QD0Q•

Q•

The ordering of the classes Q, W, M and NB

of G has a conjugate which is factorized and thus every nonnormal maximal subgroup

is the product of two nilpotent subgroups.)

In [30], Huppert also shows that if G ∈ B and p ,= q are prime divisors of |G|, then G

has a normal
{
p, q

}
-subgroup N such that a Hall

{
p, q

}
-subgroup of G/N is nilpotent.

It is easy to see that this last property of G is equivalent to the property that G/Oπ(G)

has a nilpotent Hall π-subgroup for every set π of primes. Thus Huppert’s statement is

equivalent to the second statement of the following

4.5.13 Proposition. Let W be the class of finite groups G such that G/Oπ(G) has

a nilpotent Hall π-subgroup for every set of primes π. Then

(i) W is a subgroup-closed formation of finite soluble groups;

(ii) B ⊆ W;

(iii) W ⊆ R0X and

(iv) W and M contain the same primitive groups, hence the smallest Schunck classes

containing W and M coincide.

Proof. (i) Let G ∈ W and let π be a set of primes. If Gπ/Oπ(G) is a Hall subgroup

of G/Oπ(G), then clearly Gπ is a Hall subgroup of G. Therefore G possesses Hall π-
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subgroups for all sets of primes π, hence is soluble. Since all Hall subgroups of the

soluble group G are isomorphic, all Hall π-subgroups of G/Oπ(G) are nilpotent.

If N ! G and π is a set of primes, then clearly Oπ(G)N/N ≤ Oπ(G/N). There-

fore (Gπ/N)/Oπ(G/N) is an epimorphic image of Gπ/N , hence is a nilpotent Hall π-

subgroup of G/N , showing that G/N ∈ W. Therefore W is Q-closed. To see that it

is S-closed, let S ≤ G. Then Oπ(G) ∩ S ≤ Oπ(S), whence S/Oπ(S) is an epimorphic

image of S/S ∩ Oπ(G) ∼= SOπ(G)/Oπ(G). Now a Hall π-subgroup of SOπ(G)/Oπ(G) is

contained in a Hall π-subgroup of G/Oπ(G), hence is nilpotent. Therefore S ∈ W and

W is S-closed.

Now let M , N ∈ W and put G = M ×N . If π is any set of primes and Mπ and Nπ are

Hall π-subgroups of M and N respectively, then Gπ = Mπ × Nπ is a Hall π-subgroup

of G. Since Oπ(G) contains (even equals) Oπ(M) × Oπ(N), the group Gπ/Oπ(G) is an

epimorphic image of Mπ/Oπ(M)×Nπ/Oπ(N) which is nilpotent. Therefore G ∈ W and

thus W is also D0-closed, hence is a subgroup-closed formation.

(ii) Since clearly Q ⊆ W and B is the smallest formation containing Q, it follows that

B ⊆ W.

(iii) Let G ∈ W. Then G/Op′(G) is the product of one of its Sylow p-subgroup and a

nilpotent Hall p′-subgroup, hence G/Op′(G) ∈ M. Since
⋂

p∈±!P Op′(G) = 1, it follows

that G ∈ R0M.

(iv) Let G be a primitive W-group. Since G is soluble, G has a unique minimal normal

subgroup N of prime exponent p, say. Then Op′(G) = 1 and therefore G has a nilpotent

Hall p′-subgroup. Since G is the product of a Hall p′-subgroup and a Sylow p-subgroup,

we have G ∈ M. Conversely, let G be a primitive M-group, let p be the exponent of

the unique minimal normal subgroup N of G and let π be a set of primes. If p ∈ π,

then N ≤ Oπ(G) and therefore Oπ(G/N) = Oπ(G)/N . Now N = F (G) and thus

G/N ∈ B ⊆ W which shows that (G/N)/Oπ(G/N) has a nilpotent Hall π-subgroup

and by an isomorphism theorem, the same is true for G. If p /∈ π, then a Hall π-subgroup

of G is contained in a Hall p′-subgroup of G which is nilpotent by Lemma 3.2.5. Hence

G/Oπ(G) has a nilpotent Hall π-subgroup for all sets π of primes.

Remark. Since the class M is D0-closed by Lemma 1.3.2, it follows that R0M ⊆
SD0M = SM. Therefore every B-group and also every W-group is a subgroup of a group

which is the product of two nilpotent subgroups. On the other hand, if G ∈ M, then

G/F (G) ∈ B ⊆ W, and since F (G) ≤ Oπ′π(G) for every set of primes, it follows that

G/Oπ′π(G) has a nilpotent Hall π-subgroup for every set of primes π.
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In general, uppercase Latin letters denote groups (A, B, G, H , . . . ) or sets, lowercase

(Latin) letters symbolize elements of sets or groups. Uppercase Fraktur stands for classes

of groups while script is used for sets of groups. Lowercase Greek letters usually denote

homomorphisms of groups (α, β, . . . ) or sets of primes (π, σ, τ . . . ).

In the following, G and H will be groups, A and B are subgroups of G and g, h ∈ G.

Ω will be a set acting on G via endomorphisms (the action is written exponentially).

Integers are denoted by k, m and n, a prime by p.

±"N the set of positive integers

±"N0 the set of nonnegative integers

GF (pn) the finite field of order pn

(m, n) the greatest common divisor of the integers m and n

±"P the set of primes

π′ complement of the set π of primes in ±"P
p′ =

{
p
}′

= ±"P \
{
p
}

G ∼= H G is isomorphic with H

G × H the direct product of G and H

G ∩∪ H the regular wreath product of G and H

〈X〉 the subgroup of G generated by the elements of X ⊆ G

〈x1, x2, . . .〉 the subgroup generated by the set
{
x1, x2, . . .

}

gh the action of h on G: gh = h−1gh

Xω the set
{
xω | x ∈ X

}

XΩ the subgroup of G generated by the set
{
xω | x ∈ X, ω ∈ Ω

}

XΩ XΩ =
⋂
ω∈Ω Xω

[g,ω] the commutator of g and ω; [g,ω] = g−1gω

[A, B] the subgroup of G generated by all [a, b] where a ∈ A and b ∈ B

NΩ(X) normalizer of the set X: NΩ(X) =
{
ω ∈ Ω | [x,ω] ∈ X for all x ∈ X

}

CΩ(X) centralizer of the set X: CΩ(X) =
{
ω ∈ Ω | [x,ω] = 1 for all x ∈ X

}
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Z(G) centre of the group G; Z(G) = CG(G).

G(n) n-th derived subgroup of G defined recursively by G(0) = G

and G(n+1) = [G(n), G(n)] for n ≥ 0

G′, G′′ = G(1), G(2)

F (G) Fitting subgroup of G, the subgroup generated by the normal nilpotent

subgroups of G

Fn(G) n-th term of the Fitting series of G defined recursively by F0(G) = 1

and Fn+1(G)/Fn(G) = F
(
G/Fn(G)

)
for every n ≥ 0

Φ(G) Frattini-subgroup of G, the intersection of all maximal subgroups of G

Oπ1π2...πk(G) defined recursively; Oπ1(G) is the π-residual of G, i.e. the intersection of

all normal subgroups N of G with G/N a π-group

and Oπ1π2...πk(G) = Oπk
(
Oπ1π2...πk−1(G)

)
if k > 1.

Oπ1π2...πk
(G) defined recursively: Oπ1

(G) is the π-radical of G, i.e. the subgroup of G

generated by all subnormal π-subgroups of G

and Oπ1π2...πk
(G)/Oπ1π2...πk−1

(G) = Oπk

(
G/Oπ1π2...πk−1

(G)
)

if k > 1.

Gπ a Hall π-subgroup of the group G

XG(H) if G is the product of two subgroups, the factorizer XG(H) of H is the

unique smallest factorized subgroup of G that contains H ;

Cπ G satisfies Cπ (conjugacy) if it satisfies Cπ and all Hall π-subgroups of G

are conjugate

Dπ G satisfies Dπ (dominance) G satisfies Cπ and every π-subgroup is con-

tained in some Hall π-subgroup of G

Eπ G satisfies the property Eπ (existence) if it possesses a Hall π-subgroup.

|G| the cardinality of the set G

σ(G) the set of primes dividing the order of some element of G; if G is finite,

this equals the set of prime divisors of the group order |G|.
c(G) the nilpotency class of the nilpotent group G

d(G) the least integer k such that G(k) = 1

bp(G) pbp(G) = |P | where P is a Sylow p-subgroup of G

cp(G) the nilpotency class of a Sylow p-subgroup of G

dp(G) the derived length of a Sylow p-subgroup of G

ep(G) pep(G) is the exponent of a Sylow p-subgroup of G

bπ(G) = maxp∈π bp(G)

cπ(G) = maxp∈π cp(G)

dπ(G) = maxp∈π dp(G)
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eπ(G) = maxp∈π ep(G)

n(G) Fitting length of G; the least integer k such that Fk(G) = G

lπ(G) π-length of G; the number of nontrivial π-factors in the series

1 ≤ Oπ′(G) ≤ Oπ′π(G) ≤ Oπ′ππ′(G) ≤ . . . ≤ G

lp(G) = l{p}(G)

N the class of all finite nilpotent groups

S the class of all finite soluble groups

Sπ the class of all soluble π-groups
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