
Efficient multiplication algorithms

for finite polycyclic groups

by Burkhard Höfling

Technische Universität, Institut für Geometrie,
Pockelsstr. 14, 38106 Braunschweig, Germany

e-mail: b.hoefling@tu-bs.de

Abstract: Let G be a finite soluble group given by a reduced confluent polycyclic presentation.
Represent group elements by reduced words. Then there exists an algorithm for multiplying
two group elements which has subexponential running time and requires polynomial space.
Moreover, given the prime factorisation of the group order, the problem of multiplying two
group elements is probabilistically polynomial time equivalent to the same problem for p-groups,
where p divides the order of G.

Classification (AMS 2000): 20-04, 20D10, 68W40

1. Introduction

A polycyclic presentation P of a (necessarily soluble) finite group G is a presentation

of the form

〈 g1, . . . , gn | g
ei

i = wi,i, 1 ≤ i ≤ n, gjgi = giwi,j, 1 ≤ i < j ≤ n 〉,

where, for 1 ≤ i ≤ j ≤ n, the ei are integers ≥ 2 and the wi,j are words in gi+1, . . . , gn.

Regarding the above relations as rewriting rules gei

i → wi,i, gjgi → giwi,j, we obtain

a Knuth Bendix rewriting system for G with respect to the wreath product ordering;

see [11, Section 9.4]. The rewriting process is usually called collection. The resulting

reduced expression for g ∈ G with respect to this system is of the form g = ga1

1 . . . gan

n ,

where 0 ≤ ai < ei. We call P reduced if the wi,j are reduced; it is consistent if the

corresponding Knuth Bendix rewriting system is confluent, that is, if the ai are uniquely

defined by g. This is clearly the case if and only if |G| = e1 · · · en. In this case, we will

refer to ga1

1 . . . gan

n as the normal form or reduced form of g. Throughout the article, we

will assume that all polycyclic presentations are reduced and consistent.

the process of finding the reduced form of the product w1w2, where w1 and w2 are

reduced words in g1, . . . , gn, will be called a multiplication with respect to g1, . . . , gn (or

with respect to P). A (Las Vegas) multiplication algorithm with respect to g1, . . . , gn is

Introduction 2

a (Las Vegas) algorithm which carries out such a multiplication. Note that every mul-

tiplication algorithm can compute a reduced expression for the inverse of an element,

see Lemma 3.3. Using this fact, a multiplication algorithm can be used to reduce any

word w in g1, . . . , gn to its normal form by replacing inverses and multiplying reduced

subwords.

The possibly simplest multiplication algorithm consists in collecting the concatena-

tion of the words to be multiplied. When collecting a word, usually several rewriting

rules are applicable at each step. The efficiency of collection depends heavily on the

strategy used to make a choice, and it is now generally believed that collection from

the left is the best such strategy, at least for practical purposes; see [9, 12]. For nilpo-

tent groups and p-groups, more elaborate multiplication algorithms are known; see

[10]; note that some authors use the term “collection” in the more general sense of

“multiplication”.

While algorithms such as collection from the left work very well in many practical

situations, [9] contains easy examples of presentations of cyclic groups of prime power

order for which the number of collection steps in any collection algorithm grows expo-

nentially in the composition length of the group. On the other hand, such a group has

an obvious presentation such that the number of collection steps only grows linearly in

the composition length. This indicates that the performance of a collection algorithm

not only depends on the strategy but also on the presentation of a given group G.

Therefore, in the present article, we use the following approach for finding efficient

multiplication algorithms. In order to multiply two words which are reduced with re-

spect to P, compute a presentation P ′ of G for which a fast multiplication algorithm

is known. Then translate the words to be multiplied into reduced words with respect to

P ′. Multiply then, using the multiplication algorithm for P ′, and translate the result

back into a reduced word with respect to P. Such an approach requires a preprocess-

ing step for computing P ′ and possibly additional information needed for subsequent

translations of reduced words. This will be visible in the results below.

In Sections 3 – 5, we let P ′ reflect the structure of the abelian factors in the derived

series of G and use a slight variant of collection from the left and obtain Theorem 5.1,

which can be summarised as follows. Details about our computational model can be

found in Section 2.

Theorem. Let G be a finite soluble group of derived length d and composition

length l, and let P be a reduced confluent polycyclic presentation of a finite group G.

Then there exists a multiplication algorithm such that r multiplications require at most

O((l3 log2 |G|+ r)(Cl log |G|)2d + dlL6) ⊆ eC′ log l log log |G|

bit operations, where C, C ′ are suitable constants, and O(dl2 log |G|) bits of workspace.

Since the input includes P and therefore has a bit length of at least log2 |G|, this

has the following consequence.

Introduction 3

Corollary. For any polycyclic presentation, there exists a multiplication algorithm

which has subexponential running time and requires polynomial space.

In Sections 6 – 9, we follow a different approach. We show that the problem of

finding an asymptotically fast multiplication algorithm for an arbitrary soluble group

reduces to finding such an algorithm for p-groups, provided the prime factorisation

of the ei is known. This reduction is carried out in four steps. Proposition 6.1 shows

that we may assume the ei to be primes, and by Theorem 6.2, it suffices to consider

presentations where a subset of the Gi forms a normal series with elementary abelian

factors. Then we reduce to multiplications in nilpotent subgroups in Theorem 8.5, and

finally from nilpotent subgroups to their Sylow p-subgroups in Theorem 9.1. Putting

these results together, we obtain the following result; cf. Corollary 9.3.

Theorem. Let P be a reduced confluent polycyclic presentation, and assume that

the prime factorisation of each ei is known. Then there exists a Las Vegas multiplication

algorithm for P which requires an expected number of

O(l4Pp(G) + l9 log5 |G|Mp(G) + rl3 log3 |G|Mp(G))

bit operations to perform r multiplications, where l is the composition length of G.

Here, Pp and Mp are functions modelling the cost of r multiplications in the Sylow

p-subgroup of G, one for each prime, where Pp(G) is the cost of a preprocessing step

and Mp(G) is the cost of a subsequent multiplication. A more precise definition of Pp

and Mp can be found in Section 9.

Thus, the question whether there exists a polynomial time multiplication algorithm

for P is reduced to the case of p-groups and the problem of factorising integers.

Corollary. If there exists a (Las Vegas) multiplication algorithm for p-groups which

runs in polynomial time, then there exists a Las Vegas polynomial time multiplication

algorithm for any finite soluble group, given prime factorisations of the ei.

Note that it is an open problem whether integers can be factorised in polyno-

mial time. Finding a factorisation of e ∈ N is obviously a prerequisite for reducing

to p-groups, for it is equivalent to finding the Sylow subgroups of the cyclic group

〈 g | ge = 1 〉.
The only probabilistic part of the algorithm is the use of the meat-axe algorithm

for finding submodules of a reducible matrix group [7, 8].

The bounds obtained above, especially the one in the second theorem, may seem

to be too large for practical computations. However, it seems unlikely that in concrete

examples, the worst case assumptions leading to them are justified. Indeed, since a

multiplication in G is replaced by a large number of multiplications in (usually small)

p-subgroups, this may still lead to a reduction of the overall multiplication time. We

leave the question of practical usefulness for further investigations.

Notation and definitions 4

2. Notation and definitions

Throughout the article, G will be a finite soluble group with reduced confluent poly-

cyclic presentation

〈 g1, . . . , gn | g
ei

i = wi,i, 1 ≤ i ≤ n, gjgi = giwi,j, 1 ≤ i < j ≤ n 〉.

The terms “multiplication”, “reduced form”, “normal word” etc. all refer to P (or

its generators g1, . . . , gn, unless specified otherwise. All polycyclic presentations will be

assumed reduced and confluent.

Our computational model is based on the following assumptions. The number of

bit operations for adding, subtracting and multiplying two nonnegative integers ≤ n

is O(log n), O(log n) and O(log2 n), respectively. Division with remainder and the Ex-

tended Euclidean algorithm require O(log2 n) and O(log3 n) bit operations, respec-

tively. Storing a nonnegative integer < n requires O(log n) bits, and copying it requires

O(log n) bit operations.

We will also assume that a group multiplication in a group H requires at least

O(log |H|) bit operations. This agrees with our assumptions on integer arithmetic and

allows to ignore the cost of index arithmetic.

Let li = blog2(ei − 1) + 1c and put Lk =
∑n

i=k li and Ik =
∑n

i=k l3i . We set L = L1

and I = I1. Note that L is a lower bound on the input length of a multiplication

algorithm for G, since at least L bits are required to store the exponents e1, . . . , en

Moreover, a word in g1, . . . , gn requires O(L) bits of storage, so that P can be stored

using O(n2L) ⊆ O(L3) bits of storage. Clearly, L ∈ O(log |G|) and log |G| ∈ O(L).

3. Variants of collection from the left

If w = gi1
gi2

. . . gir
is a word in g1, . . . , gn which is not reduced, then collection from

the left always chooses j minimal such that gij
. . . gik

is a left hand side of one of the

relation in P for an integer k ≥ j, and replaces gij
. . . gik

by the corresponding right

hand side.

Easy examples show that the number of bit operations required to reduce a word gb
jg

a
i

using collection to the left grows at least linearly in a and b. This leads to performance

problems when ei and ej are large. It is well-known that the case when b is large can

be handled by fast powering, and that a similar idea, namely computing powers of the

conjugation automorphism induced by gi, can be used if a is large; cf. e. g. [5]. The

following algorithm uses a similar approach, and it is not difficult to see that all bounds

in this section hold with a suitable modification of collection from the left.

3.1 Algorithm.

Input: integers i, k such that 1 ≤ i ≤ k ≤ n and such that gi normalises Gk+1, reduced

words w1, . . . , wr ∈ Gk+1, a nonnegative integer b =
∑m−1

j=0 bj2
j with bi ∈ { 0, 1 }.

Variants of collection from the left 5

Output: the normal forms vl of w
ga−1

i
l w

ga−2
i

l · · ·wl, where 1 ≤ l ≤ r.

(1) let xk+1 := wi,k+1, . . . , xn := wi,n;

(2) for l = 1, . . . , r do let ul := wl, vl := 1;

(3) for j = 0, . . . ,m− 1 do

(4) if bj = 1, then

(5) for l = 1, . . . , r, write vl = g
ak+1

k+1 · · · gan

n and replace vl by the normal form

of x
ak+1

k+1 · · ·xan

n ul.

(6) for l = 1, . . . , r do write ul = g
ak+1

k+1 · · · gan

n and let ul be the normal form of

x
ak+1

k+1 · · ·xan

n ul;

(7) for l = k + 1, . . . , n do write xj = g
ak+1

k+1 · · · gan

n and let yj be a reduced

expression for x
ak+1

k+1 · · ·xan

n .

(8) for l = k + 1, . . . , n do let xl := yl;

3.2 Lemma. Let i, k be integers with 1 ≤ i ≤ k < n, and assume that gi normalises

Gk+1. Moreover, let b ∈ N \ { 0 } and m = blog2 bc + 1, and assume that w1, . . . , wr ∈
Gk+1 are reduced. Then the normal forms of

w
gb−1

i
l w

gb−2
i

l · · ·wgi

l wl, wlw
gi

l . . . w
gb−1

i
l , w

gb
i

l ,

where 1 ≤ l ≤ r, can be computed using O(m(n− k + r)Lk+1) multiplications in Gk+1

and O((n− k + r)Lk+1) bits of workspace.

Proof. We only prove the statement for

w
gb−1

i
l w

gb−2
i

l · · ·wl,

for which Algorithm 3.1 is an algorithm, the other statements being similar. To prove

the correctness of Algorithm 3.1, it suffices to consider the case when r = 1. Write

g = gi, u = u1, v = v1, w = w1. For t ∈ N, let zt := wgl−1

wgl−2

· · ·w, and observe

that zs+t = (zs)
gt

zt for all s, t ∈ N. Now an easy induction argument shows that at

the beginning of Step (4) of Algorithm 3.1, we have xl = gg2j

l , u = z2j , v = zsj
, where

sj =
∑l−1

l=0 bj2
j, so that

(g
ak+1

k+1 · · · gan

n)g2j

= x
ak+1

k+1 · · ·xan

n . (∗)

Evaluating (∗) using fast powering requires at most 2
∑n

l=k+1b1 + log2 alc ∈ O(Lk+1)

multiplications in Gk+1. Storing a reduced word requires O(L1) bits. The statement

now follows.

In the case of collection to the left, it is well-known that the normal form w of g−1h

can be computed at the same cost as the product gw; see also Proposition 3.4 (b). For

other multiplication algorithms, this need not be the case, see, e. g. [10, Section 7.1]

However, we obtain the following.

Variants of collection from the left 6

3.3 Lemma. Let g, h be normal words in G. Then the normal form of g−1h can be

computed using at most n multiplications in G and O(L) bits of workspace.

Proof. Let g = ga1

1 . . . gan

n , h = gb1
1 . . . gbn

n be the normal forms of g and h. Let

0 ≤ c < e1 be such that c ≡ b1 − a1 (mod e1). Compute the normal form gd1

1 . . . gdn

n

of ggc
1, using one multiplication in G. Let g∗ = gd2

2 . . . gdn

n , h∗ = gb1
2 . . . gbn

n . In G2,

recursively compute a normal form w∗ such that (g∗)w∗ = h∗, at a cost of O(L2)

multiplications in G. Then w = gc
1w

∗ is in normal form, and one easily checks that

gw = h, observing that d1 = b1.

The complexity of the modified version of collection from the left can now be anal-

ysed as follows; note that the hypotheses are always satisfied for k = 1.

3.4 Proposition. Let 1 ≤ k ≤ n be such that Gk+1 E G and for all i < j ≤ k,

wi,i = g
di,i

i+1vi,i with 0 ≤ di,i < ei+1 and wi,j = gjvi,j, where the vi,i and vi,j are reduced

words in Gk+1. Let w ∈ G be a reduced word.

(a) If 1 ≤ i ≤ k < n and 0 ≤ b < ei, then the word wgb
i can be reduced to normal

form using

O(li(n− i)Lk+1 + (Li+1 − Lk+1)(n− k)Lk+1)

multiplications in Gk+1 and requiring O((n− i)Lk+1) bits of workspace.

(b) If k < n, a multiplication and an inversion in G can be carried out using

O(k(n− k)(L1 − Lk+1)Lk+1)

multiplications in Gk+1, requiring O(nLk+1) bits of workspace.

(c) If k = n, then a multiplication or an inversion in G requires at most

O(nL1)

bit operations and O(1) bits of workspace.

Proof. Let “multiplication” mean “multiplication in Gk+1”.

(a) An easy induction argument shows that

g
gb

i
j = gjvi,jv

gi

i,jv
g2

i
i,j · · · v

gb−1
i

i,j .

Therefore, by Lemma 3.2, reduced words ui+1, . . . , uk ∈ Gk+1 such that g
gb

i
j = gjuj

can be computed using at most O(li(n − i)Lk+1) multiplications. Now assume that

ga1

1 . . . gan

n is a reduced word in G. Then

ga1

1 . . . gan

n gb
i = ga1

1 . . . gai−1

i−1 gai

i gb
i (g

gb
i

i+1)
ai+1 . . . (ggi

k)ak(gk+1 . . . gn)gb
i

= ga1

1 . . . gai−1

i−1 gai

i gb
i (gi+1ui+1)

ai+1 . . . (gkuk)
ak(gk+1 . . . gn)gb

i

= ga1

1 . . . gai−1

i−1 gci

i gdi+1

i+1 vi+1(gi+1ui+1)
ai+1 . . . (gkuk)

ak(gk+1 . . . gn)gb
i

Rewriting words with respect to polycyclic presentations 7

where either c = ai + b < ei, di+1 = 0 and vi+1 = 1, or ai + b ≥ ei, c = a + bi − ei,

di+1 = di,i, and vi+1 = vi,i.

Let i ≤ j ≤ k, 0 ≤ a, c < ej and u, v ∈ Gk+1. Since

gc
jv(gju)a = ga+c

j vga
j uga−1

j uga−2
j · · ·u,

by Lemma 3.2, we obtain a reduced word w ∈ Gk+1 such that gc
ju(gjv)a = ga+c

j w using

O(lj(n− k)Lk+1) multiplications. This also covers O(lj) bit operations required for the

addition of a and c. Thus, for j = i + 1, . . . , k − 1, we use this to replace g
dj

j vj(gjuj)
aj

by a reduced expression of the form g
cj

j g
dj+1

j+1 vj+1, where 0 ≤ cj < ej, 0 ≤ dj+1 < ej+1

and vj+1 ∈ Gk+1. Therefore, at a cost of O((Li+1 − Lk+1)(n− k)Lk+1) multiplications,

we obtain

ga1

1 . . . gan

n gb
i = ga1

1 . . . gai−1

i−1 gci

i . . . g
ck−1

k−1 gdk

k vk(gk+1 . . . gn)gb
i ,

which can be reduced to normal form using O(li(n−k)Lk+1) multiplications. The claim

now follows.

(b) Let g = ga1

1 . . . gan

n and h = gb1
1 . . . gbn

n be reduced words. Successively multiplying

the first word by gb1
1 , . . . gbn

n as in (a) and then by the reduced word g
bk+1

k+1 . . . gbn

n ∈ Gk+1

gives the normal form of the product. This requires

O((L1 − Lk+1)nLk+1 + k(n− k)(L1 − Lk+1)Lk+1)

multiplications, which proves (b). To invert g, we choose h by setting b1 ≡ −a1

(mod e1), bi ≡ −ai − di−1,i−1 for i = 2, . . . , k and bk+1 = . . . = bn = 0. If w is the

reduced form of gh, then w ∈ Gk+1, and the normal form v of its inverse can be found

at a cost of O((n − k)Lk+1) multiplications by Lemma 3.3. Clearly, gb1
1 . . . gbk

k v is a

reduced expression for the inverse of g.

(c) Note that this implies that G is abelian. Thus, an argument similar to (a) shows

that wgb
i can be reduced to its normal form using O(L) multiplications in G. The result

now follows as in (b).

3.5 Remark. Instead of re-computing the xl in Algorithm 3.1 and related algo-

rithms in Lemma 3.2 each time, one may store them, once they are computed for

the first time. This requires O(nL2
1) bits of storage. If all necessary xj are known,

this reduces the cost in Lemma 3.2 and Proposition 3.4 (a) and (b) to O(mrLk+1),

O(lik + (Li+1 − Lk+1)Lk+1), and O(k(L1 − Lk+1)Lk+1), respectively. .

4. Rewriting words with respect to polycyclic presentations

Let (h1, . . . , hr) be a sequence of elements of G and for i = 1, . . . , r + 1, write Hi =

〈hi, . . . , hr 〉. The sequence (h1, . . . , hr) is a polycyclic generating sequence of a subgroup

H of G if H = H1 and for i = 1, . . . , r, Hi+1 is a proper normal subgroup of Hi such

that Hi/Hi+1 is cyclic. The series

H = H1 . H2 . · · · . Hr . Hr+1 = 1

Rewriting words with respect to polycyclic presentations 8

is the polycyclic series of H associated with (h1, . . . , hr).

Evidently, (g1, . . . , gn) is a polycyclic generating sequence of G. Conversely, if

(h1, . . . , hr) is a polycyclic generating sequence of H, then there exists a polycyclic

presentation of H with generators h1, . . . , hr.

Let g = ga1

1 . . . gan

n with 0 ≤ ai < ei. If g 6= 1, the depth dp(h) of h 6= 1 is the least

integer i such that ai 6= 0, the leading coefficient lc(g) is ai and the relative order ro(g)

is the integer ei. We put dp(1) = n + 1 and lc(1) = 0.

A polycyclic generating sequence (h1, . . . , hr) of H is an induced generating sequence

of H with respect to P if dp(hi) < dp(hi+1 for i = 1, . . . , r.

Let H be a subgroup of G with polycyclic generating sequence h1, . . . , hr. The

following two algorithms serve to rewrite a reduced word w ∈ H in the generators

g1, . . . , gn as a reduced word in h1, . . . , hr, and may also be used as a membership test

for H. For the case when the ei are primes, very similar algorithms are implemented

in the computer algebra system GAP [3], but seem not to have been published.

4.1 Algorithm.

Input: a polycyclic presentation P of G, a polycyclic generating sequence h1, . . . , hr

of a subgroup H of G, and an element g ∈ G, where h1, . . . , hr and g are given as

normal words in g1, . . . , gn.

Output: integers c1, . . . , cr, d1, . . . , dr, j1, . . . , jn and normal words h∗
1, . . . , h

∗
r ∈ G such

that

(a) Hi+1h
∗
i = Hi+1h

ci

i and 〈Hi+1h
∗
i 〉 = 〈Hi+1hi 〉;

(b) (h∗
i)

di ∈ Hi+1, and if 1 ≤ k < di and x ∈ Hi+1(h
∗
i)

k, then dp(x) ≤ dp(h∗
i) and

|Hi : Hi+1| = di;

(c) if h∗
i 6= 1, then lc(h∗

i) divides ro(h∗
i), and if i < j and dp(h∗

i) = dp(h∗
j), then

lc(h∗
i) divides lc(h∗

j),

(d) jl is the least integer such that dp(h∗
jl
) = l if such an integer exists, and jl = n+1

otherwise.

where Hi = 〈hi, . . . , hr 〉 for i = 1, . . . , r + 1.

(1) for d := 1, . . . , n do let jd := n + 1;

(2) for i := r, r − 1, . . . , 1 do

(3) let h∗
i := hi;

(4) let d := dp(h∗
i); let j := jd;

(5) if j ≤ r then let e := lc(h∗
j), h := h∗

j else let e := ro(h∗
i), h := 1;

(6) call the Extended Euclidean Algorithm to compute 0 ≤ ci, t < ro(h∗
i) such

that ci lc(h
∗
i) + te ≡ gcd(lc(h∗

i), e) (mod ro(h∗
i); let h∗

i := ht(h∗
i)

ci ;

(7) if h∗
i 6= 1 and lc(h∗

i) = lc(h), then let h∗
i := h−1h∗

i ; go to (4);

(8) if h∗
i 6= 1 then let di = e/ lc(h∗

i); let jd := i; else let di = 1;

Rewriting words with respect to polycyclic presentations 9

4.2 Proposition. Algorithm 4.1 is correct and requires O(rL) multiplications in G

and O(rI) bit operations. Moreover, the sequence (hji
)ji≤n is an induced generating

sequence of H.

Proof. If the condition in Step (7) is true, d = dp(h∗
i) increases, so that for each i,

this can only happen n times. The Extended Euclidean Algorithm requires

O(log3 ro(h∗
i)) = O(l3d)

bit operations, and computing the normal form of ht(h∗
i)

ci needs O(ld) multiplications

in G. This gives the above bounds on the complexity. By induction on r − i, it is easy

to see that properties (a) – (d) of Algorithm 4.1 hold.

The following algorithm uses the output of Algorithm 4.1 to rewrite a reduced word

in g1, . . . , gn as a reduced word in an arbitrary polycyclic generating sequence of a

subgroup of G.

4.3 Algorithm (Exponents with respect to polycyclic generating sequence).

Input: a polycyclic presentation P of G, a polycyclic generating sequence h1, . . . , hr of

a subgroup H of G, h∗
1, . . . , h

∗
r ∈ G, integers c1, . . . , cr, d1, . . . , dr, j1, . . . , jn satisfying

properties (a) – (d) of Algorithm 4.1, and an element g ∈ G, where h1, . . . , hr and

g are given as normal words in g1, . . . , gn.

Output: integers a1, . . . , ar and w ∈ G such that g = ha1

1 . . . har

r w satisfying 0 ≤ ai <

di = |Hi : Hi+1|, and w = 1 if g ∈ H, where Hi = 〈hi, . . . , hr 〉 for i = 1, . . . , r + 1.

(1) for i = 1, . . . , r do

(2) let v := w; let d := dp(v);

(3) while d ≤ n and i < jd ≤ n and lc(h∗
jd

) divides lc(v) do

(4) let c := ed − lc(v)/ lc(h∗
jd

); let v := (h∗
jd

)cv; let d := dp(v);

(5) if v 6= 1, then

(6) if d = dp(h∗
i) and lc(h∗

i) divides lc(v), then

(7) let ai = ci lc(v)/ lc(h∗
i) mod di; let w := h−ai

i w;

(8) else stop.

4.4 Proposition. Algorithm 4.3 is correct and requires O(rL) multiplications

in G.

Proof. Note first that for each i, Step (4) of Algorithm 4.3 is executed at most n

times, since dp(h∗
i) increases. Since c < ed, computing (h∗

jd
)cv requires at most O(ld)

multiplications, giving a cost of O(L) for each i. This also covers the cost of O(n + ld)

for computing h−ai

i w.

It is also clear that g = ha1

1 . . . har

r w with 0 ≤ ai < di. Therefore it remains to

consider the case when w ∈ H. Now assume inductively that w ∈ Hi at Step (2).

Then at Step (5), v is an element of maximal depth in the coset Hi+1v = Hi+1w. In

particular, w ∈ Hi+1 if v = 1.

Rewriting words with respect to polycyclic presentations 10

If v 6= 1, by properties (a) and (b) of Algorithm 4.1, there exists an integer k with

0 ≤ k < di such that Hi+1v = Hi+1w = Hi+1(h
∗
i)

k = Hi+1h
cik
i . By the minimality of

dp(v) and dp(h∗
i), we have dp(v) = dp(h∗

i), and so lc(v) ≡ k lc(h∗
i) (mod ro(h∗

i)). Since

lc(h∗
i) divides ro(h∗

i), it follows that lc(v) is divisible by lc(h∗
i) and k = lc(v)/ lc(h∗

i).

Thus, we have Hi+1w = Hi+1h
ai

i , and so h−ai

i w ∈ Hi+1, as required.

Algorithm 4.1 and Algorithm 4.3 require that the generators of the polycyclic gen-

erating sequence (h1, . . . , hr) are given as words in the generators of P. The following

result can sometimes be used if the gi are given as reduced words in the hi.

4.5 Proposition. Let (h1, . . . , hn) be a polycyclic generating sequence of G, and

assume that gi = hih
ai,i+1

i+1 h
ai,i+2

i+2 . . . , hai,n

n is a reduced word in h1, . . . , hn for i = 1, . . . , n.

(a) There exists an algorithm which, given the ai,j above, computes reduced expres-

sions of h1, . . . , hn at a cost of O(nL) multiplications in G.

(b) Given reduced expressions for the hi as in (a), a reduced word in g1, . . . , gn can

be rewritten as a reduced word in h1, . . . , hn using O(nL) multiplications in G. The

opposite direction requires O(L) multiplications.

Proof. Observe first that 〈hi, . . . , hn 〉 = 〈 gi, . . . , gn 〉 for i = 1, . . . , n, so that

(h1, . . . , hn) is, in fact, an induced generating sequence of G.

We show that every hi can be written as a reduced word vi in g1, . . . , gn. Assume

that this is true for hi+1, . . . , hn. Then hi = gi(h
ai,i+1

i+1 . . . , hai,n

n)−1 Replacing each hj on

the right hand side by a reduced expression in gi+1, . . . , gn, a reduced expression for hi

in gi, . . . , gn can be obtained using O(Li+1) multiplications in G, taking into account

that the reduced form of an inverse in Gi+1 requires n − i ∈ O(L) multiplications by

Lemma 3.3.

Therefore we obtain reduced expressions of the hi using O(nL) multiplications. Now

every reduced word in h1, . . . , hn can be rewritten as a reduced word in g1, . . . , gn by

substituting reduced expressions for the hi and evaluating, at a cost of O(L) multi-

plications in G. To rewrite a reduced word in g1, . . . , gn, observe that we may choose

h∗
i = hi, di = ei, ci = 1 in Algorithm 4.3. Thus, Proposition 4.4 gives the result.

Sometimes, a polycyclic presentation is changed by multiplying generators by ele-

ments of a small Gk+1. In this case, a new presentation can be computed using multi-

plications in Gk+1 alone.

4.6 Proposition. Assume that Gk+1 /G and let (h1, . . . , hn) be a polycyclic gener-

ating sequence of G such that hi = giui for all i = 1, . . . , k, where u1, . . . , uk are reduced

words in Gk+1, and hi ∈ Gk+1 for i = k +1, . . . , n. Then the following statements hold.

(a) A reduced word in h1, . . . , hn can be rewritten as a reduced word in g1, . . . , gn

using O(k(L1 − Lk+1)Lk+1) multiplications in Gk+1.

(b) A reduced word in g1, . . . , gn be rewritten as a reduced word in h1, . . . , hn using

O(n(L1 − Lk+1)Lk+1) multiplications in Gk+1 and O((n− k)Ik+1) bit operations.

Rewriting words with respect to polycyclic presentations 11

(c) A polycyclic presentation of G with generators h1, . . . , hn can be computed using

O(n3(L1 − Lk+1)Lk+1) multiplications in Gk+1 and O((n− k)Ik+1) bit operations.

Proof. Let “multiplications” mean “multiplications in Gk+1”.

(a) Let h = ha1

1 . . . han

n be a reduced word in h1, . . . , hn and u ∈ Gk+1 be reduced

words. If i ≤ k, we have

uhai

i = u(giui)
ai = gai

i ug
ai
i u

g
ai−1

i
i u

g
ai−2

i
i . . . ugi

i ui, (∗)

so that by Lemma 3.2, a word v ∈ Gk+1 such that gai

i v is the normal form of uhai

i can

be computed using at most O(nliLk+1) multiplications in Gk+1. Thus, the word h =

ha1

1 . . . hak

k can be rewritten as a reduced word ga1

1 . . . gakw
k with w ∈ Gk+1. in g1, . . . , gn at

a cost of O(n(L1−Lk+1)Lk+1) multiplications in Gk+1. Substituting reduced words for

hk+1, . . . , hn, the word wh
ak+1

k+1 . . . han

n can be written as a reduced word in gk+1, . . . , gn

using Lk+1 multiplications.

(b) Let g = ga1

1 . . . gan

n be a reduced word, and for i ≤ k, write hai

i = gai

i vi, where

vi ∈ Gk+1, taking u = 1 in (∗). Then

h−a1

1 g = v−1
i ga2

2 . . . gan

n = ga2

2 . . . gak

k (v−1
i)g

a2
2

...g
ak
k g

ak+1

k+1 . . . gan

n .

Continuing like this, we obtain that

h−ak

k . . . h−a1

1 g = v−1
k (v−1

k−1)
g

ak
k . . . (v−1

2)g
a3
3

...g
ak
k (v−1

1)g
a2
2

...g
ak
k g

ak+1

k+1 . . . gan

n

= v−1
k (v−1

k−1(. . . (v
−1
2 (v−1

1)g
a2
2)g

a3
3 . . .)g

ak−1
k−1)g

ak
k g

ak+1

k+1 . . . gan

n ∈ Gk+1.

Call the last expression v. Inversion in Gk+1 requires at most n − k multiplica-

tions by Lemma 3.3, while by Lemma 3.2, conjugation by a gai

i requires at most

O(linLk+1) multiplications. Thus, v can be reduced to normal form in gk+1, . . . , gn

using O(n(L1 − Lk+1)Lk+1) multiplications. Since (hk+1, . . . , hn) is a polycyclic gen-

erating system of Gk+1, by Proposition 4.2 and Proposition 4.4, this word can be

rewritten as a normal word in hk+1, . . . , hn using O((n − k)Lk+1) multiplications and

O((n− k)Ik+1) bit operations.

(c) Let 1 ≤ i ≤ k, then

hp
i = (giui)

p = wi,iu
gp−1

i
i u

gp−2
i

i . . . ugi

i ui.

By Lemma 3.2, a reduced expression for hp
i in g1, . . . , gn can be computed using

O(nliLk+1) multiplications. If 1 ≤ i < j ≤ k, then

hjhi = gjgiu
gi

j ui = giwi,ju
gi

j ui,

and by Lemma 3.2, we obtain a reduced expression in g1, . . . , gn of the right hand side

using O(Lk+1) multiplications. In both cases, the right hand side can then be rewritten

as a reduced word in the hi using O(nL1Lk+1) multiplications by (a).

A subexponential collection algorithm 12

5. A subexponential collection algorithm

Let d denote the derived length of G. The polycyclic presentation P of G exhibits the

cycle structure of the derived series of G if there exist integers i1, . . . , id such that, for

k = 1, . . . , d, G(k) = Gik
, and

G(k−1)/G(k) = 〈hik
G(k) 〉 × 〈hik+1G

(k) 〉 × · · · × 〈hik+1
G(k) 〉.

Let Mder(G) and Wder denote the maximum number of bit operations and bits of

workspace required to perform a multiplication in G if P exhibits the cycle structure

of the derived series of G.

5.1 Theorem. Let d and l denote the derived and composition lengths of G, re-

spectively.

(a)

Mder(G) ≤ (ClL)2d−1 ≤ eC′ log l log L,

where C and C ′ are suitable constants, and Wder ∈ O(dL).

(b) A polycyclic presentation P ′ exhibiting the cycle structure of the derived series

of G can be computed using O(l4L3Mder(G) + dlL6) bit operations.

(c) Any reduced word with respect to P can be rewritten as a reduced word

with respect to P ′ using O(LMder(G)) bit operations; the other direction requires

O(nLMder(G) + lI) bit operations.

Proof. (a) Let C ∈ R be such that, for all G and P exhibiting the cycle structure

of the derived series of G, a multiplication in G can be carried out using at most (CL)4

multiplications in G′ if G is not abelian, and using at most ClL bit operations if G

is abelian. Such a C exists by (b) and (c) of Proposition 3.4. Induction on d then

shows that a multiplication requires (ClL)2d−1 bit operations. Note that by [6], we

have d ∈ O(log l), from which the second part of the inequality follows.

(b) Assume that 1 ≤ k ≤ n such that Pk+1 is a polycyclic presentation of Gk+1

with generators h1, . . . , hr such that (h1, . . . , hr) exhibits the cycle structure of the

derived series of Gk+1, and that, for k < i ≤ n, gk can be expressed as a reduced word

in h1, . . . , hr. Let “multiplication”, “induced generating sequence”, “normal form” all

refer to Pk+1, unless specified otherwise.

Using Algorithm 4.1 and Algorithm 4.3, each hj can be rewritten as a word

g
ak+1

k+1 . . . gan

n , using O(lLk+1) multiplications and O(lIk+1) bit operations. Now

hjgk = gk w
ak+1

k,k+1 . . . wan

k,n︸ ︷︷ ︸
v

,

where v is a word in gk+1, . . . , gn. By substituting words in h1, . . . , hr for gk+1, . . . , gn

in the wk,j and multiplying, the words wk,j can be rewritten as words in h1, . . . , hr,

from which we obtain a reduced expression of v at a cost of O(L2
k+1). In a similar way,

A subexponential collection algorithm 13

we obtain a reduced expression of gek

k = wk,k. Putting h0 = gk, this yields a polycyclic

presentation P∗
k of Gk with generators h0, . . . , hr

Let g ∈ Gk+1, then the normal form of ggk , and hence of a commutator [g, gk] =

g−1ggk can be computed using O(Lk+1) multiplications by Lemma 3.3 and Lemma 3.2.

The normal forms of a commutator [g, h] with h ∈ Gk+1 and gei require O(l) and

O(li) multiplications, respectively. This shows that an induced generating sequence

(t1, . . . , ts) for G′
k can be computed using O(l2Lk+1) multiplications and O(l2Ik+1) bit

operations.

Next, apply Algorithm 4.1 to the sequence (h1, . . . , hr, t1, . . . , ts) to obtain f1, . . . , fr,

defined by fi = |〈hi, . . . , hr, t1, . . . , ts 〉 : 〈hi+1, . . . , hr, t1, . . . , ts 〉|. This requires

O(lLk+1) multiplications and O(lIk+1) bit operations. In addition, let f0 = ek and

put M = 2f0 . . . fr. Then hfi

i = hai,0

0 · · · ·hai,r

r G′
k for i = 0, . . . , r. Let B = (bi,j)0≤i,j≤r,

where bi,j = ai,j if i 6= j, and let bi,i = (ai,i − fi) mod M . Using a standard algorithm

for computing the Smith normal form of B modulo M (see, e. g., [11, Section 8.3]), we

compute integral matrices P , D, Q with entries in the range { 0, . . . ,M − 1 } such that

det(P) ≡ det(Q) ≡ 1 (mod M) and D is a diagonal matrix (but not necessarily with

entries dividing each other) with entries d1, . . . , dr, such that B ≡ PDQ (mod M),

at a cost of O(r3 log3 M + r2 log4 M) ⊆ O(L6
k) bit operations. If Q = (qi,j)0≤i,j≤r and

xi = hqi,0

0 · · · ·hqi,r

r , then it follows that xdi

i ∈ G′
k for i = 0, . . . , r, and, after removing

those xi with di = 1, the sequence (x0, . . . , xr, t1, . . . , ts) is a polycyclic generating

sequence of Gk such that

Gk/G
′
k = 〈x0G

′
k 〉 × · · · × 〈xrG

′
k 〉.

In a similar way, we can replace t1, . . . , ts by a polycyclic generating sequence of G′
k ex-

hibiting the cycle structure of G′
k. This yields a polycyclic generating sequence y1, . . . , yt

of Gk exhibiting the cycle structure of Gk,where each yi is given as a reduced word in

h0, . . . , hr. Now Proposition 3.4 shows that a multiplication with respect to P∗
k of two

reduced words in the generators h0, . . . , hr can be performed at a cost of O(lklLk+1)

multiplications with respect to Pk+1. This allows to compute yjyi and ye
i as reduced

words in h0, . . . , hr, where e = |〈 yi, . . . , yt 〉 : 〈 yi+1, . . . , yt 〉|. Using Algorithm 4.1

and Algorithm 4.3, a reduced word in h0, . . . , hr, can be rewritten in the generators

y1, . . . , yt, at a cost of O(l2lkL
2
k) multiplications and O(lI) bit operations. In this way,

a presentation of Gk with generators y1, . . . , yt, and each gi (which can be written as

a word in h0, . . . , hr) can be written as a word in y1, . . . , yt. Thus, using O(l4L3) mul-

tiplications and O(dL6) bit operations, this allows to replace k by k − 1 in our initial

assumption, and we may repeat the above procedure if k > 1. We let P ′ = P1.

(c) Let h1, . . . , hr be the generators of P ′. Substituting reduced expressions in

h1, . . . , hr for g1, . . . , gn and multiplying with respect to P ′ yields a reduced word in

h1, . . . , hr, using O(L) such multiplications. By Algorithm 4.1 and Algorithm 4.3, any

reduced expression in h1, . . . , hr can be rewritten as a reduced expression in g1, . . . , gn

using O(lL) multiplications with respect to P ′ and O(lI) bit operations.

Reduction to elementary abelian normal series 14

6. Reduction to elementary abelian normal series

A polycyclic generating sequence (h1, . . . , hn) of G refines a series

H = H1 . H2 . · · · . Hr = 1

of the subgroup H of G if there exist j1, . . . , jr such that Hi = 〈hji
, . . . , hn 〉 for i =

1, . . . , r.

In this section, we reduce the problem of multiplying with respect to P to the case

when P refines an elementary abelian normal series. This implies that the ei are all

primes. We proceed in two steps, first showing that we may assume that the ei are

primes. Note that these results can also be deduced from Theorem 5.1, albeit with a

significantly worse bound on the cost.

Assume that P, M, Pcomp, Mcomp, Pelab and Melab are functions such that

the maximum number of bit operations required for r multiplications in G is in

O(P(G) + rM(G)) for any P, that it is in O(Pcomp(G) + rMcomp(G)) when the Gi

form a composition series of G, and in O(Pelab(G) + rMelab(G)) when the Gi refine an

elementary abelian series of G.

6.1 Proposition. Assume that for each ei, the prime factorisation is given. Then

a polycyclic presentation P ′ whose associated polycyclic series is a composition series

of G and such that the generators of P ′ are powers of those of P can be computed us-

ing O(nPcomp(G)+nL2Mcomp(G)+n2I) bit operations. Moreover, a reduced word with

respect to P can be converted into a reduced word with respect to P ′ and vice versa us-

ing O(I) bit operations. Thus, we may choose P(G) = nPcomp(G)+nL2Mcomp(G)+n2I

and M(G) = I + Mcomp(G).

Proof. Let Pn+1 be the empty presentation, and assume that we have defined a

polycyclic presentation Pk+1 of Gk+1 whose associated series is a composition series of

Gk+1s. such that the generators of Pk+1 are powers of gk+1, . . . , gn. Let ek = pk,1 · · · pk,r

be a prime factorisation of ek. As generators for Pk, we choose

h1 = gk, h2 = g
pk,1

k , h3 = g
pk,1pk,2,...,hr

k = g
pk,1···pk,r−1

k ,

together with the generators hr+1, . . . , hs of Pk+1. If 0 ≤ a < ek, write

a = a1 + pk,1(a2 + pk,2(a3 + . . .))

with 0 ≤ ai < pk,i for i = 1, . . . , r, at a cost of O(rl2k) ⊆ O(l3k) bit operations. Moreover,

a can be computed from the ai at the same cost. Therefore, a reduced word in generators

hr+1, . . . , hs can be converted into a reduced word in generators gk, . . . , gn and back at

a cost of O(Ik) bit operations.

To obtain the relations of Pk, we take the set of relations of Pk+1 and add relations

hjhi = hihj, 1 ≤ i < j < r, h
pk,i

i = hi+1 if i < r, and for 1 ≤ i ≤ r < j ≤ s, we

add relations hjhi = hivi,j, where vr,r and the vi,j are reduced words in hr+1, . . . , hs

Reduction to elementary abelian normal series 15

obtained as follows. Firstly, vr,r is wk,k, rewritten as a reduced word in hr+1, . . . , hs,

and if r < j ≤ s and hj = ga
m with 0 ≤ a < em, we obtain v1,j by rewriting wk,m as a

reduced word in hr+1, . . . , hs and taking its ath power. If 1 ≤ i < r and vi,j is known

for all j, then Lemma 3.2 can be used to compute

vi+1,j = h
h

pk,i
i

j

for all j at a cost of O(log pk,i(n−k)Lk+1) multiplications with respect to Pk+1. Thus,

at a total cost of O(lk(n−k)Lk+1 such multiplications and O((n−k)Ik) bit operations,

we obtain Pk from Pk+1. The total cost of computing P ′ = P1 can thus be bounded

by O(nL2Mcomp + n2I) bit operations. Consequently, a multiplication with respect to

P can be carried out by computing P ′, translating the words into reduced words with

respect to P ′, performing the multiplication with respect to P ′, and translating the

result back into a reduced word with respect to P.

Now we can prove the main result of this section. The proof is similar to that of

Theorem 5.1 but gives a sharper bound on the cost involved.

6.2 Theorem. Assume that e1, . . . , en are primes. Then a polycyclic presentation

P ′ for G refining a normal series of G with elementary abelian factors can be computed

using O(nPelab + n4LMelab(G) + n4I) bit operations. Converting r reduced words in

g1, . . . , gn into reduced words in the generators of P ′ requires O(Pelab(G)+rLMelab(G))

bit operations, and the other direction requires O(Pelab(G) + rnLMelab(G) + nI) bit

operations. Therefore we may choose Pcomp(G) = nPelab + n4LMelab(G) + n4I and

Mcomp(G) = nLMelab(G).

Proof. Suppose that Pk+1 is a polycyclic presentation of Gk+1 with generators

hk+1, . . . , hn, and that (hk+1, . . . , hn) refines a normal series with elementary abelian

factors of Gk+1. Moreover, assume that we have computed reduced expressions in

hk+1, . . . , hn for gk, . . . , gn. Let “multiplication”, “polycyclic generating sequence”,

“normal form” all refer to Pk+1, unless specified otherwise.

Let g, h ∈ Gk+1, then the normal form of a commutator [g, gk] = g−1ggk can be

computed using O(Lk+1) multiplications by Lemma 3.3 and Lemma 3.2. The same

holds for [g, h], gpk

k and gpi . Therefore an induced generating sequence (t1, . . . , tr) for

H = G′
kG

pk

k can be computed using O((n−k)2Lk+1) multiplications and O((n−k)2Ik+1)

bit operations.

After deleting those hi with dp(hi) = dp(tj) for some j, the sequence

(gk, hk+1, . . . , hn, t1, . . . , tr)

is a polycyclic generating sequence of Gk refining the series Gk .H D 1. If H 6= 1, then

we obtain a polycyclic generating sequence of G refining the sequence Gk.H.H ′Hp D 1,

where p = ro(xl). Continuing like this, at a cost of O((n−k)3(Lk+1Melab(Gk+1)+Ik+1)),

we obtain a polycyclic generating sequence (gk, yk+1, . . . , yn) refining a normal series of

Gk with elementary abelian factors.

Exhibited supplements 16

Now by Lemma 3.2, the normal form of ygk

j can be computed using O((n− k)Lk+1)

multiplications. To obtain the normal form of gpk

k , we substitute the normal forms

of gk+1, . . . , gn into wk,k and multiply, at a cost of O(Lk+1) multiplications. Normal

forms of yyi

j and y
ro(yj)
j can be computed in a straightforward way, using O(n− k) and

O(log ro(yj)) multiplications, respectively. By Proposition 4.4, each of these normal

words can be rewritten as a normal word in yk+1, . . . , yn using

O((n− k)3 + (n− k)Lk+1) ⊆ O((n− k)2Lk+1)

multiplications and O((n − k)3 + (n − k)Ik+1) bit operations. The same holds for the

normal forms of gk+1, . . . , gn. Thus, a polycyclic presentation Pk of Gk with generators

gk, yk+1, . . . , yn can be computed using

O((n− k)3(Lk+1Melab(Gk+1) + Ik+1))

bit operations, thus allowing to replace k by k − 1 in our initial assumption, and to

repeat the above if k > 0.

The remaining statements follow as in the proof of Theorem 5.1.

6.3 Remark. In a similar way, a polycyclic presentation refining the derived series

of G can be computed using only operations in groups having such a polycyclic pre-

sentations, the number of such operations being polynomial in L1. If G is nilpotent,

then “derived series” may be replaced by “lower central series”, or by “lower p-central

series” if G is a p-group. The bounds on the cost remain the same in all cases.

7. Exhibited supplements

While the bounds obtained in Theorem 5.1 may be of some theoretical interest, they

are usually far too bad to reflect empirical results. One of the main reasons seems

to be that the multiplications in Gk+1 used for the estimates in Proposition 3.4 and

Theorem 5.1 do not actually take place in the whole of Gk+1, but in much smaller

subgroups of G. This gives rise to the following definition.

Let (h1, . . . , hr) be a polycyclic generating sequence of G. Assume that H is a

subgroup of G and let { i | hi ∈ H } = { i1, . . . , is }, where 1 ≤ i1 < i2 < · · · < is ≤
r. The subgroup H of G is exhibited by (h1, . . . , hr) if (hi1

, . . . , his
) is a polycyclic

generating sequence of H. It is easy to see that the polycyclic presentation of H with

generators (hi1
, . . . , his

) is the restriction to H of the polycyclic presentation of G with

generators h1, . . . , hr. Obviously, G and the Gi are exhibited by (g1, . . . , gn).

Moreover, if H is an exhibited subgroup of G and 1 ≤ i ≤ r, then the subgroups

H∩ < hi, . . . , hr > is exhibited as well. More generally, it is not difficult to prove that

intersections of subgroups exhibited by (h1, . . . , hr) are exhibited by (h1, . . . , hr).

The following result indicates the role that exhibited subgroups play in multiplica-

tion algorithms.

Exhibited supplements 17

7.1 Proposition. Assume that H is an exhibited subgroup of G, and that there

exists k ≤ n such that Gk+1 E G with G = HGk+1. Then a multiplication in G can be

carried out using one multiplication in H and O((L1−Lk+1)(n−k)Lk+1) multiplications

in Gk+1.

Proof. Let g = ga1

1 . . . gan

n , h = gb1
1 . . . gbn

n be reduced words in G and write

ga1

1 . . . gan

n gb1
1 . . . gbn

n = ga1

1 . . . gak

k gb1
1 . . . gbk

k︸ ︷︷ ︸
∈H

(
g

ak+1

k+1 . . . gan

n

)g
b1
1

...g
bk
k g

bk+1

k+1 . . . gbn

n︸ ︷︷ ︸
∈Gk+1

Reducing the word ga1

1 . . . gai−1

i−1 gb1
1 . . . gbi−1

i−1 in H into normal form gc1
1 . . . gcn

n requires one

multiplication in H.

By Lemma 3.2, the expression(
g

ck+1

k+1 . . . gcn

n

) (
g

ak+1

k+1 . . . gan

n

)g
b1
1

...g
bk
k

(
g

bk+1

k+1 . . . gbn

n

)
can be reduced to its normal form g

c′
i

i · · · gc′n
n using at most O((L1−Lk)(n−k+1)Lk+1)

multiplications in Gk+1. Clearly, gc1
1 . . . gci−1

i−1 g
c′
i

i . . . gc′n
n is a reduced expression for gh.

7.2 Remark. The multiplication algorithm outlined in the proof of Proposition 7.1

is very similar to collection from the left if fast powering and fast conjugation are used.

The main difference is that when collection from the left, a carry word gci

i . . . gcn

n occurs

whenever a gbi

i is moved across a word in Gk+1. However, the bound on the cost in

Proposition 7.1 remains the same.

In order to exploit Proposition 7.1 to obtain an efficient multiplication algorithm, it

is important to choose Gk+1 in such a way that a multiplication in Gk+1 is cheap. The

following proposition illustrates the idea which we will be using. The Ni which we will

choose are terms of a chief series, so that H will complement one of the factors.

7.3 Proposition. Let 1 = N0 / N1 / · · · / Nr = G be a normal series of G with

nilpotent factors. Then there exist a subgroup H of G and k ∈ { 1, . . . , r } such that Nk

is nilpotent and G = HNk. Moreover, we also have G = HK for some Sylow subgroup

K of Nr.

Proof. The statement certainly holds if G = 1. Therefore assume that G 6= 1 and

let k be minimal such that Nk 6≤ Φ(G). Then there exists a maximal subgroup H of G

satisfying HNk = G. Moreover, since Nk−1 ≤ Φ(G) and Nk/Nk−1 is nilpotent, also Nk

is nilpotent; see, e. g. [2, A, 9.3 (c)]. Since Nk 6≤ Φ(G), there exists a Sylow subgroup

K of Nr such that K 6≤ Φ(G). Clearly, K E G and HK = G.

The following algorithm uses ideas very similar to Algorithm 3.1.

7.4 Algorithm PowerSum.

Input: an n × n matrix M over a ring R with multiplicative identity, an integer

k =
∑m−1

j=0 bj2
j with bj ∈ { 0, 1 }

Exhibited supplements 18

Output: S =
∑k−1

i=0 M i

(1) let S := 1n; T := 1n;

(2) for i = 0, . . . ,m− 1 do

(3) let T := (T (M − 1) + 2)T ;

(4) if bi = 1, then S := (T (M − 1) + 1)S + T ;

7.5 Lemma. Algorithm 7.4 is correct and requires O(m) multiplications and ad-

ditions of n × n matrices over R, and thus O(n3m) multiplications and additions in

R.

Proof. Write Sr =
∑k−1

i=0 M i and observe that M r = (M − 1)Sr + 1 and Sr+s =

M rSs + Sr for r, s ∈ N \ { 0 }. This shows that at the beginning of Step (3), T = S2i

and S = Ski
, where ki =

∑i
j=0 bj2

j.

Now we are ready to prove that complements of elementary abelian factors can be

found using mere linear algebra.

7.6 Theorem. Let 0 ≤ k ≤ n be such that Gk+1 is an elementary abelian normal

subgroup of G of exponent p. Then, using

O(k(n− k) log3 p + k4(n− k)3 log2 p + k2(n− k)3(L1 − Lk+1) log2 p)

bit operations, it can be tested whether a complement H to Gk+1 exists in G, and in

this case, elements u1, . . . , uk ∈ Gk+1 can be computed such that (g1u1, . . . , gkuk) is an

induced generating sequence of H, and thus H is exhibited by the polycyclic generating

sequence

(g1u1, . . . , gkuk, gk+1, . . . , gn).

Proof. Following [1, Section 3], Gk+1 is complemented in G if, and only if, there

exist u1, . . . , uk ∈ Gk+1 such that h1 = g1u1, . . . , hk = gkuk satisfy a set of defining

relations for G/Gk+1 in the generators Gk+1g1, . . . , Gk+1gk. Such a set of defining

relations can be easily derived from the polycyclic presentation of G, by replacing gi

by Gk+1gi throughout.

Now let 1 ≤ i < j ≤ k and write gjgi = ga1

1 . . . gak

k u with u ∈ Gk+1 and reduced

right hand side, then

hjhi = gjgiu
gi

j ui = ga1

1 . . . gak

k uugi

j ui. (∗)

Moreover, putting

u∗
i = u

g
a1−1

1
1 . . . ug1

1 u1,

we obtain

ha1

1 . . . hak

k = (g1u1)
a1(g2u2)

a2 . . . (gkuk)
ak

= ga1

1 u∗
1g

a2

2 u∗
2 . . . gak

k u∗
k

= ga1

1 ga2

2 . . . gak

k (u∗
1)

g
a2
2

...g
ak
k (u∗

2)
g

a3
3

...g
ak
k . . . (u∗

k−1)
g

ak
k u∗

k

(∗∗)

Reduction to the nilpotent case 19

Equating (∗) and (∗∗), the uj have to satisfy

uugi

j ui = (u∗
1)

g
a2
2

...g
ak
k (u∗

2)
g

a3
3

...g
ak
k . . . (u∗

k−1)
g

ak
k u∗

k. (∗∗∗)

With respect to the basis gk+1, . . . , gn of Gk+1 (viewed as a Fp-vector space), write

uj = (xj,k+1, . . . , xj,n). If k < l ≤ n, then ggi

l = (el,k+1, . . . , el,k+1) with respect to

that basis, so that the action of gi on ul can be described by multiplying the vector

by the matrix E = (el,m), which can be read off the presentation of G. Note that u∗
l

corresponds to

(xl,k+1, . . . , xl,n)(Ea1−1 + Ea1−2 + · · ·+ E + 1)

By Lemma 7.5, the matrix Ea1−1 + Ea1−2 + · · · + E + 1 can be computed using

O(log ai(n− k)3 log2 p) bit operations. Thus, computing matrices corresponding to the

action of gak

k , g
ak−1

k−1 gak

k , . . . , ga2

2 . . . gak

k in that order, a linear expression of the coeffi-

cients of the right hand side of (∗∗∗) can be obtained using O((L1−Lk+1)(n−k)3 log2 p)

bit operations. The same is true for the left hand side. Comparing coefficients leads to

n− k linear equations in xl,m, 1 ≤ l ≤ k < m ≤ n.

Similarly, if 1 ≤ i ≤ k, write gpi

i = ga1

1 . . . gak

k u, where the right hand side is reduced

with u ∈ Gk+1. Then hpi

i = gpi

i u∗∗u, where u∗∗ = upi−1
i upi−2

i . . . ui. This leads to

u∗∗u = (u∗
1)

g
a2
2

...g
ak
k (u∗

2)
g

a3
3

...g
ak
k . . . (u∗

k−1)
g

ak
k u∗

k,

and thus to n − k linear equations, at a cost of O((n − k)2(L1 − Lk+1) log2 p) bit

operations.

Thus, at a total cost of O(k2(L1 − Lk+1)(n− k)3 log2 p) bit operations, we obtain a

system of 1
2
k(k+1)(n−k) equations in k(n−k) variables. Gaussian elimination requires

at most O(k(n− k) log3 p + k4(n− k)3 log2 p) bit operations to solve the system, or to

deduce that none exists.

7.7 Remark. As in [1, Section 3], the algorithm outlined in the proof of Theo-

rem 7.6 can also be used to compute the set of all complements, or of one representative

of each conjugacy class complements of Gk+1 in G. The cost for computing an induced

generating sequence for each additional complement is polynomial in k, n−k and log p;

however, trivial examples show that the number of complements or representatives need

not.

8. Reduction to the nilpotent case

In order to prove the main result of this section, we will need some technical results.

8.1 Lemma. Assume that Gk+1 is an elementary abelian normal subgroup of G

of exponent p, and that N1 < N2 < · · · < Nr ≤ Gk+1 are subgroups of G given by

polycyclic generating sequences.

(a) Using

Reduction to the nilpotent case 20

O((n− k) log3 p + k(n− k)3 log2 p + k2(n− k)2 log2 p)

bit operations, a polycyclic presentation of G with generators g1, . . . , gk, hk+1, . . . , hn

can be computed such that Gk+1 = 〈hk+1, . . . , hn 〉, U = 〈hr+1, . . . , hn 〉 and V =

〈hs+1, . . . , hn 〉.
(b) Converting r reduced words in g1, . . . , gk, hk+1, . . . , hn into reduced words

in g1, . . . , gn requires O(r(n − k)2 log2 p) bit operations; for the opposite direction,

O((n− k) log3 p + (n− k)3 log2 p + r(n− k)2 log2 p) bit operations are required.

Proof. We consider Gk+1 as a vector space with basis gk+1, . . . , gn over Fp, so that

polycyclic generating sequences of its subgroups correspond to bases of subspaces. Now

extend a basis of N1 to a basis of N2, then on to N3, and so forth, and finally to one of

Gk+1, and let hk+1, . . . , hn be the corresponding polycyclic generating system of Gk+1.

Computing such a basis requires n− k inverses and (n− k)3 multiplications modulo p,

and thus O((n− k) log3 p + (n− k)3 log2 p) bit operations.

Now (g1, . . . , gk, hk+1, . . . , hn) is a polycyclic generating sequence of G, and any

reduced word in g1, . . . , gk, hk+1, . . . , hn can be rewritten as a word in g1, . . . , gn at the

cost of a matrix multiplication, requiring O((n− k)2 log2 p) bit operations. To convert

reduced words in g1, . . . , gk, hk+1, . . . , hn, the inverse matrix has to be computed, at

a cost of O((n − k) log3 p + (n − k)3 log2 p) bit operations. Rewriting each word then

requires O((n− k)2 log2 p) bit operations. This proves (b).

In order to compute a polycyclic presentation of G with generators

g1, . . . , gk, hk+1, . . . , hn,

proceed as follows. For relations gei

i = wi,i and ggi

j = wi,j, rewrite the wi,j as words

in g1, . . . , gk, hk+1, . . . , hn to obtain a right hand side in the new generators. Right

hand sides of relations whose left hand side is of the form hgi

j can be found by con-

jugating the matrix action of gi on gk+1, . . . , gn by the matrix affording the base

change from gk+1, . . . , gn to hk+1, . . . , hn. Note that hp
j = 1 = hhi

j for all i, j with

k < i, j ≤ n. Thus, the total cost of computing a polycyclic presentation with gener-

ators g1, . . . , gk, hk+1, . . . , hn is O((n − k) log3 p + k(n − k)3 log2 p + k2(n − k)2 log2 p).

Next, we extend Theorem 7.6 to arbitrary elementary abelian factors.

8.2 Proposition. Let 0 ≤ k < m ≤ n be integers such that Gk+1 and Gm+1 are

normal G such that Gk+1/Gm+1 elementary abelian of prime exponent p. Then there

exists an algorithm which, at a cost of

O(((m− k)6 + k4(m− k)3 + k2(m− k)3(L1 − Lk+1))(Ik+1 − Im+1))

bit operation, either computes integers l, r with k ≤ l < r ≤ m, and a polycyclic

generating sequence

(g1u1, . . . , gkuk, uk+1, . . . , um, gm+1, . . . , gn)

Reduction to the nilpotent case 21

of G such that

(g1u1, . . . , gkuk, uk+1, . . . , ul, ur+1, . . . , um, gm+1, . . . , gn)

is a polycyclic generating sequence of a maximal subgroup H of G and U/V is a chief

factor of G avoided by H, where U = 〈ul+1, . . . , un 〉 and V = 〈ur+1, . . . , un 〉, or proves

that Gk+1/Gm+1 ≤ Φ(G/Gm+1).

Proof. Note that a polycyclic presentation of G/Gm+1 can be read off P (simply

by deleting gm+1, . . . , gn from the set of generators and each relation), and a polycyclic

generating sequence of G/Gm+1 with the above property can be translated into one of

G exhibiting H by appending gm+1, . . . , gn. Thus, we may assume that m = n.

We consider Gk+1 as an FpG-module. Repeated application of the Meat-Axe algo-

rithm [7, 8] yields an FpG-composition series of the FpG-module Gk+1, at an expected

cost of

O((m− k)7 log2 p + (m− k)4 log(m− k) log3 p + k(m− k)4 log2 p)

⊆ O((m− k)6(Lk+1 − Lm+1))

bit operations. (See Remark 8.3 below.) This yields a polycyclic generating sequence

(uk+1, . . . , un) of Gk+1 refining a G-composition series

1 = N0 / N1 / · · ·Nr = Gk+1

of Gk+1. Using Lemma 8.1, at a cost of

O((m− k) log3 p + k(m− k)3 log2 p + k2(m− k)2 log2 p)

bit operations, we compute a presentation with generators g1, . . . , gk, xk+1, . . . , xn.

For i = 1, . . . , r, we use Theorem 7.6 to test whether Ni/Ni−1 has a complement

H/Ni+1 in Gk+1/Ni−1, at a total cost of

O(k(m− k)2 log3 p + k4(m− k)4 log2 p + k2(m− k)4(L1 − Lk+1) log2 p).

If no such complement exists, then by [2, A, 9.10], we have Ni/Ni−1 ≤ Φ(G/Ni−1) for

all i. Therefore, by [2, A, 9.2 (e)], Gk+1 is contained in the Frattini subgroup of G, and

the proof is complete.

Therefore, let i be minimal such that Ni/Ni−1 is complemented in G/Ni+1, and let l,

r be such that Ni = 〈xl+1, . . . , xn 〉 and Ni+1 = 〈xr+1, . . . , xn 〉. By Theorem 7.6, there

exist reduced words v1, . . . , vk in the generators xk+1, . . . , xn such that

(g1v1, . . . , gkvk, xk+1, . . . , xn)

is a polycyclic generating sequence of G such that

(g1v1, . . . , gkvk, xk+1, . . . , xl, xr+1, . . . , xn)

is a polycyclic generating sequence of H.

Reduction to the nilpotent case 22

Finally, v1, . . . , vk can be rewritten as reduced words u1, . . . , uk in gk+1, . . . , gn by

substituting reduced expressions of uk+1, . . . , un, at a cost of O(k(n − k)2 log2 p) bit

operations. Using (m − k) log3 p ∈ O(Lk+1 − Lm+1), we obtain the bound on the cost

stated in the proposition.

8.3 Remark. The only probabilistic part of the above algorithm is the use of the

Meat-Axe algorithm. Selecting evenly distributed random elements in the relevant ma-

trix algebra seems to require the computation of a basis of that algebra, at a cost of

O((m − k)6 log2 p + (m − k)2 log3 p) bit operations. The remainder of the algorithm

consists of computing the characteristic polynomial f of such a random element A, at

a cost of O((m− k)3 log2 p + (m− k) log3 p), factoring that polynomial, at an expected

cost of O((m − k)3 log(m − k) log3 p) [4], finding a nontrivial vector in the nullspace

of g(A) using Gaussian elimination, where g is an irreducible factor of f , at a cost of

O((m − k) log3 p + (m − k)4 log2 p), and computing submodules generated by a single

vector, at the cost of k(m− k)3 log2 p+(m− k) log3 p). This gives an expected running

time of

O((m− k)6 log2 p + (m− k)3 log(m− k) log3 p + k(m− k)3 log2 p).

Note that r elements sufficient for practical purposes can be obtained by multiply-

ing and adding a certain number of randomly selected generators, at the cost of

O((m− k)3 log2 p), essentially reducing the above estimate to

O((m− k) log3 p + (m− k)4 log2 p).

In order to apply Proposition 8.2 to an exhibited subgroup, the next lemma will

prove useful.

8.4 Lemma. Let 0 ≤ k ≤ m ≤ n be such that Gk+1 and Gm+1 are normal subgroups

of G, and such that Gk+1/Gm+1 is elementary abelian of exponent p. Assume that H

is a subgroup exhibited by (g1, . . . , gn), and write J = { i | gi ∈ H }. Let h1, . . . , hn ∈ G

be such that hi = gi if i /∈ J or i > m, such that hi = gixi if i ∈ J and i ≤ k, where

xi ∈ H ∩ Gk+1, and such that Gk+1 ∩ H = 〈hj | j ∈ J, j > k 〉. Then (h1, . . . , hn) is a

polycyclic generating sequence of G. More generally, if E ≥ H ∩ Gk+1 is exhibited by

P and J = { i | gi ∈ E }, then (hi)i∈J is a polycyclic generating sequence of E.

Proof. We first show that (h1, . . . , hn) is a polycyclic generating sequence of G. Put

Hi = 〈hi, . . . , hn 〉. As Gk+1/Gm+1 is a Fp-vector space with basis

{Gm+1gj | k < j ≤ m },

the factor space Gk+1/(Gk+1 ∩H) has a basis

{ (Gk+1 ∩H)gi | k < i ≤ m, i /∈ J } = { (Gk+1 ∩H)hi | k < i ≤ m, i /∈ J }.

Moreover,

{Gm+1gi | k < i ≤ m, i ∈ J }

Reduction to the nilpotent case 23

is a basis of (Gk+1 ∩H)/Gm+1, and since

{Gm+1hi | k < i ≤ m, i ∈ J }

generates (Gk+1 ∩ H)/Gm+1, it follows that it is likewise a basis. As Hi = Gi if i ≤ k

or i > m, this shows that

G = H1 . H2 . · · · . Hn . Hn+1 = 1

is a series with cyclic factors, with |Hi : Hi+1| = |Gi : Gi+1| for all i, and (h1, . . . , hn)

is a polycyclic generating sequence.

Since E contains H∩Gk+1, we have gi ∈ E if, and only if, hi ∈ E for all i. Therefore

E is also exhibited by (h1, . . . , hn).

We are now ready to prove the main result of this section: the reduction of a multipli-

cation in a finite soluble group to multiplications in nilpotent subgroups. To formulate

the result, let Pnilp and Mnilp be functions such that r multiplications in an arbitrary

nilpotent subgroup N of G given by a polycyclic presentation refining an elementary

abelian normal series of N can be carried out using Pnilp(G)+rMnilp(G) bit operations.

8.5 Theorem. Assume that P refines a normal series with elementary abelian

factors. Then there exists a Las Vegas algorithm which, at an expected cost of

O(nPnilp + n6L4Mnilp + n9I + n7LI) bit operations, computes a polycyclic pre-

sentation P ′ of G such that r multiplications with respect to P ′ require at most

O(nPnilp + rn2L2Mnilp(G)) bit operations. Moreover, r normal words in the gen-

erators of P ′ can be written as a normal word with respect to P at a cost of

O(nPnilp + rnLMnilp + nI) bit operations, and a normal word in the generators of P

can be written as a normal word with respect to P ′ at a cost of O(nPnilp + rLMnilp)

bit operations. Therefore, we may choose Pelab = nPnilp + n6L4Mnilp + n9I + n7LI and

Melab = nLMnilp.

Proof. Denote the terms of an elementary abelian series of G refined by P by

1 = L0 / L1 / · · · / Lt = G.

We construct polycyclic presentations P0, P1, . . . , Pn as follows. Let P0 = P, H0 =

G and N0 = 1. Now assume that Pi has generators h1, . . . , hn exhibiting subgroups

Hi, N1, . . . , Ni such that for j = 1, . . . , i, Nj is normalised by Nj+1, . . . , Ni and Hi,

all Nj are nilpotent, Hi ∩ Nj is a term of the polycyclic series defined by Pi, and

G = HiNiNi−1 . . . N1. Moreover, assume that reduced expressions of g1, . . . , gn in the

generators of Pi are known.

If Hi = 1, let Pi+1 = Pi and Hi+1 = Ni+1 = 1. Otherwise, restrict Pi to Hi to

obtain a polycyclic presentation P i of Hi with generators x1, . . . , xm. This restriction

refines the series with terms Hi ∩Nj, Hi ∩ Lk, where 1 ≤ j ≤ i and 1 ≤ k ≤ t. Denote

this series by

1 = M0 / M1 / · · · / Ms = Hi.

Reduction to p-groups and conclusions 24

Starting with k = 1, use Proposition 8.2 to test whether Mk/Mk−1 ≤ Φ(Hi/Mk−1). If

this is the case, then also Mk ≤ Φ(Hi), see, e. g. [2, A, 9.2 (e)]. Thus, we may replace

k by k − 1 until we obtain a polycyclic generating sequence y1, . . . , ym of Hi likewise

refining the series with terms Hi ∩ Kj, Hi ∩ Lk, where 1 ≤ j ≤ i and 1 ≤ k ≤ t.

Moreover, Proposition 8.2 yields a term Ni+1 ≤ Mk of the polycyclic series defined by

(y1, . . . , ym) and a subgroup Hi+1 of Hi exhibited by (y1, . . . , ym) such that Hi+1Mk =

Hi. The expected total cost is O(n8I +n6LI) bit operations. Since since Hi normalises

N1, . . . , Ni, the same is true for Hi+1 and Ni+1. By construction, Hi+1 also normalises

Ni+1. Let l be such that Ll−1 ∩ Hi ≤ Mk−1 < Mk ≤ Ll. As Ll/Ll−1 is (elementary)

abelian and Mk−1 ≤ Φ(Hi), it follows from [2, A, 9.3 (c)] that Ki+1 = Ll ∩ Hi and

Ni+1 are nilpotent. For j = i, . . . , 1, let Kj = Kj+1Nj E Hj, and observe that Kj+1

normalises Nj, and that the Nj are terms in the polycyclic sequence defined by the

restriction of Pi to Hj. By Proposition 7.1, a multiplication in Kj can be carried out

using one multiplication in Kj+1 and O(nL2) multiplications in Nj. Since Ll ≤ K1, it

follows that a multiplication in Ll requires O(nPnilp + n2L2Mnilp) bit operations.

We now define a sequence (h′
1, . . . , h

′
n) of G by replacing the xi among the generators

of Pi by the corresponding yi, and by keeping the others. By Lemma 8.4, (h′
1, . . . , h

′
n)

is a polycyclic generating sequence of G.

Using Proposition 4.6, the associated polycyclic presentation Pi+1 can be computed

at a cost of O(n3L2) multiplications in Ll and O(nI) bit operations. We obtain reduced

expressions of g1, . . . , gn in (h′
1, . . . , h

′
n) at a cost of O(n2L2) multiplications in Ll and

O(n2I) bit operations. By Proposition 8.2, Ni+1/Ni+1 ∩ Hi+1 is a chief factor of Hi.

Therefore if j ≤ i, either Nj ∩ Hi ≤ Ni+1 ∩ Hi+1, or Ni+1 ≤ Nj. In the first case, the

hi ∈ Nj are the same as the h′
i in Nj, and therefore Nj is exhibited by (h′

1, . . . , h
′
n). In

the second case, the same result follows from Lemma 8.4. This shows that Pi+1 has

the required properties.

Finally, by the above argument, a multiplication in P ′ = Pn can be carried out

using O(nPnilp + (n2L2Mnilp) bit operations, while the computation of P ′ requires

O(nPnilp + n9I + n7LI + n6L4Mnilp)

bit operations.

9. Reduction to p-groups and conclusions

Finally, we show that the problem of computing in a nilpotent group G can be reduced

to computing in p-groups, where p ranges over all primes dividing the order of G.

Let S be a set of Sylow subgroups of G containing exactly one p-Sylow subgroup

for each prime dividing the order of G. We define

Pp(G) =
∑
P∈S

Pelab(P) and Mp(G) =
∑
P∈S

Melab(P).

Reduction to p-groups and conclusions 25

9.1 Theorem. Let G be a nilpotent group. Then a polycyclic presentation P ′ of G

having the same associated polycyclic series as P and exhibiting each Sylow subgroup

of G can be computed using

O(nPp(G) + n2I + LI + n4L2Mp(G))

bit operations. Moreover, a reduced word in g1, . . . , gn can be translated into a re-

duced word with respect to P ′ using O(L) multiplications with respect to P ′,

and a reduced word with respect to P ′ can be translated into a reduced word in

g1, . . . , gn using O(nL) multiplications with respect to P ′. Thus, we may choose

Pnilp = nPp(G) + n2I + LI + n4L2Mp(G) and Mnilp(G) = nLMp(G).

Proof. Let i ≥ 1 be such that the Sylow subgroups of Gi+1 are exhibited by

(gi+1, . . . , gn), and let p = pi.

By hypothesis, the order of gj is a power of pj if i < j ≤ n, and elements of Gi+1

of coprime order commute. Therefore, at a cost of O((n − i)Li+1) bit operations per

relation, or a total of O((n − i)2Li+1) bit operations, we may temporarily re-order

gi+1, . . . , , gn such that pj 6= p if i < j ≤ m and pj = p if m < j ≤ n, for a suitable

integer m. Thus, Gm+1 is a p-Sylow subgroup of Gi+1.

Let g = gi, w = wi,i(= gp), j = i + 1.

As in the proof of Theorem 7.6, the relation gp = w suffices to compute an ele-

ment u ∈ Gj such that H/Gj+1 = 〈Gj+1, gu 〉/Gj+1 is a complement of Gj/Gj+1 in

〈 g,Gj 〉/Gj+1; this requires O(l3j + lil
2
j) bit operations. If j < m, we replace j by j +1, g

by gu and w by the normal form of ugp−1

ugp−2

. . . uw. Note that the latter can be com-

puted at a cost of O(nliLj+1) multiplications in Lj+1 by Lemma 3.2. Thus, we arrive at

an induced generating sequence g1, . . . , gi−1, giv, gi+1, . . . , gn with v ∈ Gi+1, such that

(giv)p ∈ Gm+1. Therefore 〈Gm+1, giv 〉 is a Sylow p-subgroup of Gi. By Proposition 4.6,

a polycyclic presentation with generators g1, . . . , gi−1, giv, gi+1, . . . , gn can be computed

using O((n− i)3L2
i+1) multiplications in Gi+1 and O((n− i)Ii+1) bit operations.

Since the Sylow q-subgroups of Gi+1 coincide with those of Gi if q 6= p, we have

obtained a polycyclic presentation of G exhibiting all Sylow subgroups of Gi, at a cost of

O((n+ li)Ii+1) bit operations and O(n3L2
i+1) multiplications Li+1. By hypothesis, each

of these can be carried out using
∑

p

∣∣|G|
f(|G|p)) bit operations, multiplying subwords

in Sylow subgroups. Using the fact that there are only n possible values for i, we the

first result follows. Note that a reduced word with respect to P ′ can be translated into

a reduced word with respect to P and back at a cost of O(nL) multiplications and

O(L) multiplications with respect to P ′, respectively, by Proposition 4.5.

9.2 Remark. Note that the algorithm outlined in the proof of Theorem 9.1 does

not change the polycyclic series associated to P. Therefore, in the proof of Theorem 8.5,

it is possible to replace the restriction of Pi to Ll ∩ Hi by the polycyclic generating

sequence produced by Theorem 9.1, at no further cost. Let π be a set of primes. Then

the restriction of P ′ to any Ni exhibits the (unique) Hall π-subgroup (Ni)π of Ni.

As a consequence, multiplications in the Ni reduce to computations in their Sylow

References 26

subgroups. Moreover, since Ni normalises Nj if i > j, then also (Ni)π normalises (Nj)π,

so that (Nn)π(Nn−1)π . . . (N1)π is a Hall π-subgroup of G exhibited by P ′. It is now

easy to see that these Hall subgroups form a Hall system of G. (For a definition of Hall

systems, see, e. g. [2, I, 4.1].)

The results of Sections 6 – 9 can now be summarised as follows.

9.3 Corollary. Let P be an arbitrary polycyclic presentation, and assume that the

prime factorisation of each ei is known. Then r multiplications with respect to p can

be carried out using an expected number of

O(n4Pp(G) + l9L5Mp(G) + rl3L3Mp(G))

bit operations, where l is the composition length of G.

Proof. This follows by substituting the functions for P, M, Pcomp, Mcomp, Pelab,

Melab, Pnilp, and Mnilp given in Proposition 6.1, Theorem 6.2, Theorem 8.5, and The-

orem 9.1 into each other and using the obvious inequalities n ≤ l ≤ L, I ≤ L3.

References

1. Celler, F., Neubüser, J., and Wright, C. R. B.: Some remarks on the computation

of complements and normalizers in soluble groups. Acta Appl. Math. 21 (1990),

57–76.

2. Doerk, K. and Hawkes, T.: Finite soluble groups . de Gruyter, Berlin, 1992.

3. The GAP Group: GAP — Groups, Algorithms, and Programming, Version 4.3 .

St Andrews, Aachen, 2002, http://www-gap.dcs.st-and.ac.uk/~gap.

4. von zur Gathen, J. and Gerhard, J.: Modern Computer Algebra. Cambridge Uni-

versity Press, Cambridge, 1999.

5. Gebhardt, V.: Efficient collection in infinite polycyclic groups. To appear in J.

Symbolic Comp.

6. Glasby, S. P.: The composition and derived lengths of a soluble group. J. Algebra

120 (1989), 406–413.

7. Holt, D. F. and Rees, S.: Testing modules for irreducibility. J. Austral. Math. Soc.

Ser. A 57 (1994), 1–16.

8. Ivanyos, G. and Lux, K.: Treating the exceptional cases of the MeatAxe.

Experiment. Math. 9 (2000), 373–381.

9. Leedham-Green, C. R. and Soicher, L.: Collection from the left and other strategies.

J. Symbolic Comp. 9 (1990), 665–675.

10. Leedham-Green, C. R. and Soicher, L.: Symbolic collection using Deep Thought.

LMS J. Comput. Math. 1 (1998), 9–24.

11. Sims, C. C.: Computation with Finitely Presented Groups,. Cambridge University

Press, 1994.

References 27

12. Vaughan-Lee, M. R.: Collection from the Left. Journal of Symbolic Comp. 9 (1990),

725–733.

